reaction rates

 and equilibrium\qquad Period: \qquad

Introduction:

 can be controlled, it is necessary to understand the collision theory of chemical reactions.
collision theory

A chemical reaction involves bond breaking and bond forming. The states that, in order to react, molecules must collide with each other with sufficient force and the correct positioning to break old bonds and form new ones. The minimum energy that the colliding molecules must have for the reaction to occur is called the activation energy. According to the collision theory, any factor that increases the number of molecular collisions that occur, or that increases the amount of energy with which the molecules collide, will increase the rate of the reaction.

In this experiment, you will study the effect of temperature, concentration of reactants, particle size and surface area on the rates of chemical reactions. You will also investigate the effect that catalysts have on reaction rates. Catalysts are substances that provide a path of lower activation energy for reactions without being consumed

Objective: To observe the effects of temperature, concentration, particle size, surface area and catalysts on the rates of chemical reactions.
Pre-lab questions:

1. Predict the effect of temperature, concentration, and particle size on the rate of a reaction
2. An enzyme is an example of a catalyst: a substance that increases the rate of a chemical reaction without being consumed. Based on the collision theory, draw a picture of a how an enzyme might work.

Station One: The effect of temperature on reaction rate

1. You have available magnesium, 6 M HCl , ice water, and hot water. In one sentence describe your experiment.
2. Make a table of your data and carefully graph your results.
3. Write a balanced chemical equation for the reaction between hydrochloric acid and Magnesium. (Hint: It is a single replacement reaction, and $M g$ forms a +2 cation
4. Describe in your own words the effect of temperature on the rate of a reaction.

Station Two: The effect of reactant concentration on reaction rate.

6. You have available magnesium, and HCl of various concentrations. In one sentence describe your experiment.
7. Make a table of your data and carefully graph your results.
8. Describe in your own words the effect of concentration on the rate of a reaction.
9. Explain this effect in terms of the collision theory.

10. You have available several metals of various shapes and sizes, a mortar and pestle, a pair of scissors, and hot plate capable of magnetic stirring. Note that stirring a solution will effectively increase the surface area of the reactants. In one sentence describe your experiment.
11. Tabulate your data and graph your results:
12. Write a balanced chemical equation for the reaction between hydrochloric acid and aluminum. (Hint: It is a single replacement reaction, and Al forms a +3 cation
13. Describe in your own words the effect of surface area on the rate of a reaction.
14. Explain this effect in terms of the collision theory

Station Four: The effect of a catalyst on reaction rate.

You have available a computer with access to the internet. Provide examples of three chemical reactions whose rate of reaction may be increased by the use of a catalyst. Do not attach any printouts.
15. Inorganic chemical reaction

Write a balanced chemical equation:
Catalyst(s):
16. Organic chemical reaction

Write a balanced chemical equation:
7. Biological chemical reaction
Describe this reaction, or write a balanced chemical equation:
18. Describe in your own words the effect of a catalyst on the rate of a reaction
19. Explain this effect in terms of the collision theory.

Conclusions:
20. Of the various methods for increasing the rate of reaction which do you believe can have the greatest effect and why?
21. You may have observed non-linea graphs. Explain this observation- what does it mean on a molecular level?
how can we measure the rate of a reaction?
$A \rightarrow B$
reactant concentration decreases
product concentration increases
the speed (rate) of a reaction is like the speed of anything else (a car, for example):

$$
\text { rate }=\frac{\text { change }}{\text { time }}
$$

example: miles/hour
For a chemical reaction:

$$
\text { rate }=\frac{\Delta_{\text {concentration }}}{\Delta_{\text {time }}}=\frac{M}{\mathrm{~s}}
$$

[^0]reaction rates
consider:
$$
2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+\mathrm{HOH}
$$
$$
\left[\mathrm{Ca}(\mathrm{OH})_{2}\right] \text { at time }=0: 0.22 \mathrm{M}
$$
$\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$ after four seconds $\mathrm{O}: 0.100 \mathrm{M}$ what is the reaction rate for $\mathrm{Ca}(\mathrm{OH})_{2}$?
$$
\frac{0.12 M}{4 s}=\frac{0.030 M}{s}
$$
what is the reaction rate for HCl ?
0.060 M

5
(since two HCl molecules must react for each CaCl_{2} molecule)
how do molecules react?
kinetic molecular theory (kmt)

transition state or
suggests a reaction mechanism (process) activated complex
they collide with enough force to react and at the right location
applying KMT
5 ways to change the rate of reaction
hit it with a STICC!
change the
Surface area
Temperature
rule of thumb: rate doubles every $10^{\circ} \mathrm{C}$ Identity (of reactants)

Concentration (of reactants) add a Catalyst

collision theory: energy diagrams

exothermic
$1 \mathrm{~kJ} / \mathrm{mol}$ activation energy forward reaction:
$3 \mathrm{~kJ} / \mathrm{mol}$ activation energy reverse reaction:
endothermic
$3 \mathrm{~kJ} / \mathrm{mol}$
$1 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{array}{rll}
-2 \mathrm{~kJ} / \mathrm{mol} & \Delta \mathrm{H}_{\text {forward: }} & +2 \mathrm{~kJ} / \mathrm{mol} \\
+2 \mathrm{~kJ} / \mathrm{mol} & \Delta \mathrm{H}_{\text {reverse: }} & -2 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Increasing temperature
increases the kinetic energy of molecule sand their energy variation, leading to more molecules that can overcome the activation energy barrier. Ths is known as a Boltzmann distribtion
a highly efficient method to increase rate of reaction without increasing temperature:
lower the activation energy,

catalysts

aligns molecules, catalyst not consumed

A catalyzed chemical reaction

Progress of the reaction

rate law:

Shows how the rate depends on the concentrations of reactants.
three outcomes are likely: 1. no effect
2. a proportional effect
3. an exponential effect

For the decomposition of nitrogen dioxide: $2 \mathrm{NO}_{2}(g) \rightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$
Rate $=\underline{\left.\mathrm{KNO}_{2}\right]^{n} \text { : }}$, where $\mathrm{k}=\underline{\text { rate constant }}$ and $\mathrm{n}=\underline{\text { reactant order }}$
if there is no effect then $n=0$, if it is proportional $n=1$, if exponential $n=>1$

3 most common errors:	assume reaction rates are predictable (only determined by experiment) assume reaction orders are from reaction coefficients (they aren't) assume product concentrations are part of rate law formula (they aren't) derive the rate law for $6 A+17 B \rightarrow 2 C+4 D+8 E$
te $=$	$]^{m}[B \ln$ where the overall reaction order $=m+n$

determining rate law: the method of initial rates

$A+B \rightarrow$ products

Trial	Initial [A] (\boldsymbol{M})	Initial [B] (\boldsymbol{M})	Initial Rate $(\mathbf{m o l} /(\mathrm{L} \cdot \mathbf{s}))$
$\mathbf{1}$	0.100	0.100	2.00×10^{-3}
$\mathbf{2}$	0.200	0.100	2.00×10^{-3}
[A] has no			
[Affect on			
rate			

doubling [B] doubles rate
this reaction is zero ${ }^{\text {th }}$ order with respect to A, first order with respect to B, and it is first order overall.

experimental initial rates for $C+D \rightarrow$ products			
trial	initial [C] in moles/liter	initial [D] in moles/liter	Initial rate in moles perliter per second
1	0.3	0.3	0.04
2	0.6	0.3	0.08
3	0.6	0.6	0.16

$$
\text { rate }=k[C][D]
$$

experimental initial rates for $A+B \rightarrow$ products			
trial	initial [A] in moles/liter	initial [B] in moles/liter	Initial rate in moles per liter per second
1	0.3	0.3	0.04
2	0.6	0.3	0.04
3	0.6	0.6	0.16

$$
\text { rate }=k[A]^{\circ}[B]^{2}
$$

experimental initial rates for $\mathrm{E}+\mathrm{F} \rightarrow$ products			
trial	initial [E] in moles/liter	initial [F] in moles/liter	Initial rate in moles per liter per second
1	0.3	0.3	0.04
2	0.6	0.3	0.08
3	0.6	0.6	0.64

$$
\text { rate }=k[E][F]^{3}
$$

the arrhenius equation

activation energy can be calculated since it depends on rate and temperature.

$$
E_{a}=\frac{\left(\ln \frac{K_{1}}{K_{2}}\right) R}{\frac{1}{T_{2}}-\frac{1}{T_{1}}}
$$

$$
\begin{aligned}
& k=\text { rate constant } \\
& E_{a}: \text { activation energy in } / / \mathrm{mol} \\
& R=8.314 \mathrm{~J} / \mathrm{K} \mathrm{~mol} \\
& \mathrm{~T}=\text { Kelvin temp }
\end{aligned}
$$

At 650 K nitrogen dioxide decomposes into nitrogen monoxide and oxygen with a rate constant of $1.66 / \mathrm{sec}$. At 700 K the rate constant is $7.39 / \mathrm{sec}$. Calculate the activation energy

$$
\begin{aligned}
& E_{a}=\frac{\left.\left(\ln \frac{1.66 / \mathrm{s}}{7.39 / \mathrm{s}}\right)(8.314) / \mathrm{K} \mathrm{~mol}\right)}{\frac{1}{700 \mathrm{~K}}-\frac{1}{650 \mathrm{~K}}} \\
& E_{a}=113 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

between topics concept: net ionic equations

what really happens in a chemical reaction
consider:

$$
\ldots \mathrm{CuCl}_{2}(\mathrm{aq})+\underline{2} \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})
$$

What really reacted?? Write the ionic equation
noting that group 1 ions and nitrates are always soluble, write the net ionic equation for the reactions of

1. potassium phosphate with calcium nitrate
$2 \underline{2} \mathrm{~K}_{3} \mathrm{PO}_{4}+\underline{3} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \underline{6} \mathrm{KNO}_{3}+1 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ answer: $3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

2. sodium hydroxide with magnesium nitrate

$$
\ldots \mathrm{NaOH}+\underline{-1} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \underline{2} \mathrm{NaNO}_{3}+\underline{1} \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})
$$

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})
$$

this is:
what really happened

$$
\text { answer: } \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})
$$

look for the precipitate!
chemical equilibrium: forward rate $=$ reverse rate

$$
\text { If }\left[\mathrm{S}_{2}\right]=0.0540 \mathrm{~mol} / \mathrm{L} \text { and }\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.184 \mathrm{~mol} / \mathrm{L}
$$

«1: mostly reactants (bad) >1: mostly products (good) generally: omit liquids and solids

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrows 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{eq}}=0.00227
$$ what is $\left[\mathrm{H}_{2}\right]$?

$$
\mathrm{K}_{\mathrm{eq}}=0.00227=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}=\frac{\left[\mathrm{H}_{2}\right]^{2}[0.054]}{[0.184]^{2}}
$$

$\left[\mathrm{H}_{2}\right]=0.0377$ moles/liter
if the actual ratio of products to reactants (Q) is $<K$ the reaction will proceed \qquad forward ; if the measured concentrations are K the reaction will shift to the \qquad until it matches the equilibrium concentrations

reaction ratios help solve equilibrium problems

1.

$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{FeSCN}^{2+}(\mathrm{aq})$
$6.00 \mathrm{M} \mathrm{Fe}^{3+}(\mathrm{aq})$ and $10.0 \mathrm{M} \mathrm{SCN}^{-}(\mathrm{aq})$ are mixed at a constant temperature. At equilibrium the concentration of $\mathrm{FeSCN}^{2+}(\mathrm{aq})$ is 4.00 M . What is the $K_{\text {eq }}$?

initial M			
change M			
equilibrium M			
$K_{\text {eq }}=\frac{\left[\mathrm{FeSCN}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}=\frac{[4.00]}{[2.00][6.00]}$			
	$=0.333$		

2.

An aqueous solution of ethanol and acetic acid, each at a concentration of 0.810 M , is heated to 100 . degrees Celsius. At equilibrium, the acetic acid concentration is
0.748. Calculate K_{eq} for the reaction.

initial M			
change M			
equilibrium M			

$\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]}=\frac{[0.062]}{[0.748][0.748]}=0.111$
3.

A tank of $\mathrm{H}_{2} \mathrm{~S}$ at a pressure of 10.00 atm and constant temperature is decomposing:

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrows 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})
$$

When the reaction has come to equilibrium, the partial pressure of $S_{2}(\mathrm{~g})$ is 0.020 atm . Calculate K_{p}.
partial pressures work just like molarity

initial atm			
change atm			
equilibrium atm			

$$
K_{p}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}^{12}\right.}=\frac{[0.040]^{2}[0.020]}{[9.96]^{2}}=3.2 \times 10-7
$$

try these two equilibrium problems

$$
X(\mathrm{~g})+Y(\mathrm{~g}) \leftrightarrows \quad 2 Z(\mathrm{~g})
$$

When 4.00 mol each of $\mathrm{X}(\mathrm{g})$ and $\mathrm{Y}(\mathrm{g})$ are placed in a 1.00 L vessel and allowed to react at constant temperature according to the equation above, 6.00 mol of $\mathrm{Z}(\mathrm{g})$ is produced. What is the value of the equilibrium constant Kc ?

	$X(\mathrm{~g})+$	$Y(\mathrm{~g}) \leftrightarrows$	$2 Z(\mathrm{~g})$
initial M	4	4	0
change M	-3	-3	+6
equilibrium M	1	1	6

$$
k_{c}=\frac{(6)^{2}}{(1)(1)}=36
$$

The war gas phosgene $\left(\mathrm{COCl}_{2}(\mathrm{~g})\right)$ decomposes according to the equation shown:

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

When pure phosgene is injected into a rigid, previously evacuated flask at 690 K the pressure in the flask is initially 1.00 atm . After the reaction reaches equilibrium at 690 K , the total pressure in the flask is 1.2 atm . What is the value of K_{p} for the reaction at 69 K ?

	$\mathrm{COCl}_{2} \leftrightarrows$	CO +	Cl_{2}
initial atm	1	0	\bigcirc
change atm	-x	+ x	+ x
equilibrium atm	$1-x$	+ x	+ x
$\begin{aligned} & P_{\text {total }}=P_{\mathrm{COCl} 2}+P_{\mathrm{CO}}+P_{\mathrm{Cl} 2} \\ & 1.2 \mathrm{~atm}=1-x+x+x \\ & 1.2 \mathrm{~atm}=1+x \\ & x=0.2 \mathrm{~atm} \end{aligned}$			
initial atm	1	0	0
change atm	-0.2	+ 0.2	+ 0.2
equilibrium atm	0.8	0.2	0.2

$$
k_{p}=\frac{(0.2)(0.2)}{(0.8)}=0.050
$$

$$
a \leftrightarrows b \quad k_{c}=\frac{[b] 1}{[a] 1}=3 \quad \begin{array}{ll}
a \leftrightarrows b \\
k=3 \\
& b \leftrightarrows c c
\end{array}
$$

$$
\begin{array}{lll}
\text { what is } k \text { for } b \leftrightarrows a ? & \text { what is } K \text { for } 2 a \leftrightarrows 2 b & k=5
\end{array} \quad \begin{aligned}
& \text { reverse }=\text { inverse } \\
& \leftrightarrows
\end{aligned}
$$

$$
k=\frac{1}{z} \quad \text { what is } k \text { for } a \leftrightarrows c \text { ? }
$$

reverse $=$ inverse
double $=$ square add = multiply

$$
k=15
$$

1. Given
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \leftrightarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{1}=0.212 @ 100^{\circ} \mathrm{C}$? Find K_{2}
$2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at $100^{\circ} \mathrm{C} \quad \mathrm{K}_{2}=$?

$$
K_{2}=1 / K_{1}=1 / 0.212=4.72
$$

3. Given:
$2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \leftrightarrows \quad 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{K}_{1}=1.2 \times 1 \mathrm{O}^{-35}$
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \leftrightarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{2}=4.6 \times 10^{-3}$
$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \leftrightarrows \quad \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{3}=4.1 \times 10^{-9}$
Find K_{4}
$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad \leftrightarrows 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \mathrm{K}_{4}=$?
4. Given:
$1 / 2 \mathrm{I}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{ICl}(\mathrm{g}) \quad \mathrm{K}_{1}=4.54 \times 10^{2} @ 25^{\circ} \mathrm{C} \quad 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \quad \leftrightarrows 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}=1 /\left(1.2 \times 10^{-35}\right)=8.3 \times 10^{34}$ Find, at the same temperature, K_{2} $2 \mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows 4 \mathrm{ICl}(\mathrm{g})$

$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$	$\leftrightarrows 2 \mathrm{~N}_{2}(\mathrm{~g})+O_{2}(\mathrm{~g})$	$K=1 /\left(1.2 \times 10^{-35}\right)=8.3 \times 10^{34}$
$4 \mathrm{NO}_{2}(\mathrm{~g}){ }_{3}$	$\leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	K
$2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g})$	$\leftrightarrows 4 \mathrm{NO}_{2}(\mathrm{~g})$	$K=1 /\left(4.6 \times 10^{-3}\right)^{2}=4.7 \times 10^{4}$
$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g})$	$\leftrightarrows 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	$K=\left(4.1 \times 10^{-9}\right)^{4}=2.8 \times 10^{-34}$

$$
K_{2}=K_{1}^{4}=\left(4.54 \times 10^{2}\right)^{4}=4.25 \times 10^{10}
$$

$$
K_{4}=\left(8.3 \times 10^{34}\right)\left(4.7 \times 10^{4}\right)\left(2.8 \times 10^{-34}\right)=1.1 \times 10^{6}
$$

le chatelier's principle

$\begin{gathered} A(\mathrm{~g})+3 B(\mathrm{~g}) \leftrightarrows C(\mathrm{~g}) \\ \Delta \mathrm{H}=+3 \mathrm{kcal} / \mathrm{mole} \end{gathered}$		$\begin{aligned} & 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows \\ & \Delta \mathrm{H}=+25 \mathrm{O} \mathrm{Kcal} \\ & \text { change } \end{aligned}$	g) shift
change	result why	1. add [NO]	\rightarrow
		2. add $\left[\mathrm{NO}_{2}\right]$	\leftarrow
add reactant	\rightarrow "stoking the fire"	3. add $\left[\mathrm{O}_{2}\right]$	\rightarrow
add product	\leftarrow "quenching the fire"	4. remove [NO]	\leftarrow
	$\rightarrow \quad \begin{aligned} & \text { it needs it } \\ & \text { (endothermic; } \Delta H>0) \end{aligned}$	5. remove $\left[\mathrm{NO}_{2}\right]$	\rightarrow
heat		6. remove $\left[\mathrm{O}_{2}\right]$	\leftarrow
pressurize		7. increase pressure	\rightarrow (3 to 2)
	\rightarrow product has fewer moles	8. increase temperature	\rightarrow (endo)
	$(1<4)$	9. decrease pressure	\leftarrow
		10. decrease temperature	\leftarrow

the best way to drive a reaction to completion is:
to remove the product as it is
formed.
rates and equilibrium
how fast how far

rates and equilibrium: problems

1. Define the following terms
A. rate of reaction (also known as reaction kinetics

D. transition state
E. activated complex
2. What is necessary for a chemical reaction to proceed (collision theory)
3.5 ways to change the rate of a reaction

3. Given an energy diagram such as the one at left, be able to determine:

How much energy a reaction, or the reverse reaction, needs to proceed

5. Where the transition state is

6. How exothermic or endothermic a reaction is

7. Rate of reaction given reaction time and concentration change

Example
$[\mathrm{HCl}]$ at time $=0: 0.22 \mathrm{M}$
[HCl] after four seconds 0.32 M
What is the reaction rate?
8. In the energy unit we learned how to predict if a reaction will take place spontaneously. In this unit we determined how to measure how fast a reaction is. What is the relationship, if any, between reaction rate and spontaneity? To consider this, answer each question with a brief explanation
a. are fast reactions always spontaneous? Provide an example that supports and
another that refutes this.
b. if the free energy of a reaction is highly positive, is it a slow reaction? Provide an example that supports and another that refutes this.
c. Are fast or spontaneous reactions dangerous? Provide an example that supports and another that refutes this.
d. Are tast reactions exothermic? Provide an example that supports and another that refutes this.
9. For the reaction $\mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{ICl}(\mathrm{g})$, the $\left[I_{2}\right]$ changes from 0.400 M at time $=0$ to 0.300 M after 4 minutes. What is the average reaction rate for I_{2} ?
\square
10. A chemical reaction is observed to occur at a rate of 2.25×10^{-2} moles per liter per second at 322 K . What is the rate in moles per liter per minute, and moles per liter per hour?
\square
11. Given the data below for the reaction of H_{2} with Cl_{2} to make HCl , calculate the average reaction rate for $\mathrm{H}_{2}, \mathrm{Cl}_{2}$, and HCl . Does it agree with the balanced chemical equation?.

Experimental Data for $\mathbf{H}_{\mathbf{2}}+\mathbf{C l}_{\mathbf{2}} \rightarrow \mathbf{2 H C l}$			
Time (\mathbf{s}) $\left[\mathbf{H}_{\mathbf{2}}\right](\boldsymbol{M})$ $\left[\mathrm{Cl}_{2}\right](\boldsymbol{M})$ 0.00 0.030 0.050 4.00 0.020 0.040	0.000		

12. Given the following data for the

 decomposition of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ calculate the rate of reaction in moles $\mathrm{H}_{2} \mathrm{O}_{2}$ consumed per liter per minute for each time interval.Initial concentration of $\mathrm{H}_{2} \mathrm{O}_{2}: 3 \mathrm{M}$
Concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ after 3 minutes: 1.3 M
15. In the reaction of aqueous sodium hydroxide and aqueous hydrochloric acid in a one liter flask, the concentration of NaOH changes from 2.0 M M to 1.0 M after 2 seconds. while the concentration of oxygen decreases from 3.0 M to 2.0 M over the same time interval.

a. Write the balanced chemical equation.

b. What is the reaction rate for the consumption of NaOH in this reaction?

13. For the energy diagram below, identify positions 1-4.

14. For the reaction of nitrogen gas with hydrogen gas to make $\mathrm{NH}_{3}(\mathrm{~g}\}$, if the rate of reaction with respect to loss of N_{2} is $1 / 88$ $\times 10^{-4} \mathrm{M} / \mathrm{s}$ determine the rate of reaction for the other two substances.
17. Given the following data for the decomposition of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$, calculate the rate of reaction in moles $\mathrm{H}_{2} \mathrm{O}_{2}$ consumed per liter per minute.

Initial concentration of $\mathrm{H}_{2} \mathrm{O}_{2}: 2.6 \mathrm{M}$
Concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ after 3 minutes: 1.53 M

Example 2:

experimental initial rates for $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$			
trial	initial $\left[\mathrm{H}_{2}\right]$ in moles/liter	initial $\left[\mathrm{O}_{2}\right]$ in moles/liter	Initial rate in moles per liter per second
1	0.6	0.3	0.04
2	1.2	0.3	0.08
3	0.6	0.6	0.16

experimental initial rates for $A+B \rightarrow$ products trial					initial $[A]$ in moles/liter	initial $[B]$ in moles/liter	Initial rate in moles per liter per second
1	0.3	0.3	0.04				
2	0.6	0.3	0.16				
3	0.6	0.6	0.64				

18. rate $=$
$k=$ \qquad 19. rate $=$
$=\square$
$k=$ \qquad \square

Example 3:			
experimental initial rates for $A+B \rightarrow$ products			
trial	initial $[A]$ in moles/liter	initial $[B]$ in moles/liter	Initial rate in moles per liter per second
1	0.1	0.1	0.1
2	0.1	0.3	0.3
3	0.2	0.3	0.6

Example 4:			
trial	experimental initial rates for $A+B \rightarrow$ products initial $[A]$ in moles/liter	initial $[B]$ in moles/liter	Initial rate in moles per liter per second
1	0.3	0.3	0.04
2	0.9	0.3	0.04
3	0.9	4.2	0.04

$$
\text { 21. rate }=
$$

$$
k=
$$

Example 6:
experimental initial rates for $A+B \rightarrow$ products trial initial $[A]$ in moles/liter initial $[B]$ in moles/liter Initial rate in moles per liter per second 1 0.20 0.40 0.040 2 0.20 0.40 0.16 3 $k=$

Here is one answer, write the other 5. You may have to add a nice connecting word or two to make it flow.

1. When reacting particles get pushed closer together so there is a greater chance of successful collisions happening. For example, if you have 100 people, they are more likely to bump into each other in this classroom compared to a soccer field. This explains why reaction rate increases when pressure is increased
2. For the reaction of hydrogen with oxygen to
make water:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

lining the reactants up in a column such as this

$$
\begin{aligned}
& \mathrm{H}-\mathrm{H} \\
& \mathrm{O}=\mathrm{O} \\
& \mathrm{H}-\mathrm{H}
\end{aligned}
$$

can lead to a hypothetical activated complex where all bonds are simultaneously breaking and forming. Draw this activated complex using dotted lines for each partial bond.
\square
26. For the reaction of chalk with hydrochloric acid $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$ in an open container at room temperature the reaction is found to be exothermic, releasing $12.5 \mathrm{~kJ} / \mathrm{mol}_{\mathrm{CaCO}}^{3}$. Predict if the rate of reaction will increase (1), decrease (D), or remain the same for each change with a brief explanation

b. More water is added to the reaction mixture.
c. The temperature is increased
d. The calcium chloride is removed from the reaction mixture as it is formed
e. A catalyst is added
27. A catalyst is discovered that lowers the activation energy of a reaction by 75 percent. Draw an energy diagram that matches this data.

28. At 150 K an unknown diatomic substance $A B$ decomposes into A_{2} and B_{2} nitrogen dioxide decomposes into nitrogen monoxide and oxygen with a rate constant of $1.4 \times 10^{4} / \mathrm{sec}$. At 700 K the rate constant is $7.3 \times 10^{6} / \mathrm{sec}$. Calculate the activation energy

29. A reaction rate doubles when the temperature increases from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. Calculate the activation energy.
30. The activation energy for the isomerization of cyclopropane to propene is $274 \mathrm{~kJ} / \mathrm{mol}$. By what factor does the rate of reaction increase as the temperature rises from $500^{\circ} \mathrm{C}$ to $550^{\circ} \mathrm{C}$?

Draw the balanced chemical equation, a reasonable activated complex and based on that design a catalyst for each of the reactions shown. For these examples assume the activated complex is for a single step reaction mechanism that shows all bonds breaking simultaneously (in reality multistep reaction mechanisms are common). Also, a catalyst provides a nonreactive template so that all criteria for collision theory are met. A suggested catalyst is shown for the first one
31. The reaction of carbon with oxygen to make carbon dioxide.

b. Activated complex (show bond formation with dotted lines)
\square

c. catalyst:
32. The reaction of magnesium with oxygen to make magnesium oxide. a. Balanced chemical equation:

33. The reaction of hydrogen with oxygen to make water.

b. Activated complex (show bond formation with dotted lines)

equilibrium problems

indicate the direction of the change in equilibrium for each change$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HCl} \quad \Delta \mathrm{H}=-167.2 \mathrm{kcal}$					
	equilibrium shift	[H2]	[12]	[HI]	K
1. add H_{2}		---			
2. add Cl_{2}			---		
3. add HCl				---	
4. remove H_{2}		---			
5. remove Cl_{2}			---		
6. remove HCl				---	
7. increase temperature					
8. decrease temperature					
9. increase pressure					
10 decrease pressure					
11. add a catalyst					

35. Define chemical equilibrium
36. Write equilibrium constant expressions for the
following reactions. For gases use either pressures
or concentrations.
a. $3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows \quad 2 \mathrm{O}_{3}(\mathrm{~g})$
b. $\mathrm{Fe}(\mathrm{s})+5 \mathrm{CO}(\mathrm{g}) \leftrightarrows \mathrm{Fe}(\mathrm{CO})_{5}(\mathrm{q})$
c. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

d. $\mathrm{AgNO}_{3}(\mathrm{aq}) \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$

\square
38. The reaction

$$
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{CO}(\mathrm{~g})
$$

occurs at high temperatures. At 700 degrees Celsius, a 2.0 liter flask contains 0.10 mol of $\mathrm{CO}, 0.20 \mathrm{~mol}$ of CO_{2}, and 0.40 mol of C at equilibrium
a. calculate K for the reaction at 700 degrees Celsius

b. Calculate K for the reaction at the same temperature if the amounts at equilibrium in the 2.0 liter flask are 0.10 mol of CO , 0.20 mol of CO_{2}, and 0.80 mol of C

c. Compare the results of a and b. Does the quantity of carbon affect the value of K ? Explain
40. The equilibrium constant K for the reaction for the reaction

$$
\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrows \quad \mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

is 6.66×10^{-12} at 1000 K . Calculate K for the reaction
$2 \mathrm{CO}(\mathrm{q})+\mathrm{O}_{2} \leftrightarrows 2 \mathrm{CO}_{2}(\mathrm{q})$
41. Calculate K for the reaction
$\mathrm{SnO}_{2}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{g}) \leftrightarrows \mathrm{Sn}(\mathrm{s})+2 \mathrm{CO}_{2}(\mathrm{~g})$
given the following information
$\mathrm{SnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{Sn}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \mathrm{K}=8.12$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \mathrm{K}=0.771
$$

39. A mixture of CO and Cl_{2} is placed in a reaction flask. $[\mathrm{CO}]=0.0102 \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{Cl}_{2}\right]=$ $0.00609 \mathrm{~mol} / \mathrm{L}$. When the reaction

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{COCl}_{2}(\mathrm{~g})
$$

has come to equilibrium at $600 \mathrm{~K},\left(\mathrm{Cl}_{2}\right)=0.00301 \mathrm{~mol} / \mathrm{L}$
a. Calculate the concentrations of CO and COCl_{2} at equilibrium
b. Calculate K
42. Dinitrogen trioxide decomposes to NO and NO_{2} in an endothermic process($\Delta \mathrm{H}=40.5$

$\mathrm{kJ} / \mathrm{mol}$).

$$
\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \leftrightarrows \mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})
$$

Predict the effect of the following changes on the position of the equilibrium; that is, state which way the equilibrium will shift (left right or no change) when each of the following changes are made:

b. adding more $\mathrm{NO}_{2}(\mathrm{~g})$
\square
c. increasing the volume of the reaction flask
\square
d. lowering the temperature
\square
43. Consider the isomerization of butane to is butane butane $(\mathrm{g}) \leftrightarrows$ isobutane (g)
with an equilibrium constant of $K=2.5$. The system is originally at equilibrium with [butane] $=1.0 \mathrm{M}$ and [isobutane] $=2.5 \mathrm{M}$ in a 1 L flask
a. if $0.50 \mathrm{~mol} / \mathrm{L}$ of isobutane is suddenly added and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?

	B 星		
initial atm	1	3	
change atm	+ x	- x	
equilibrium atm	$1+x$	$3-x$	
$k_{p}=\frac{3-x}{1+x}=2.5 \quad x=0.143$			
initial atm		1	3
change atm		+ 0.143	-0.143
equilibrium atm		1.143	2.857
$K_{\text {eq }}=\frac{2.857}{1.143}=2.5 \quad \begin{aligned} & \text { since } Q>K \text { (mixture is beyond } \\ & \text { eq value) reaction will reverse } \\ & \text { until equilibrium is reached } \end{aligned}$			

43b. if $0.50 \mathrm{~mol} / \mathrm{L}$ of butane is added instead of isobutane and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?
44. Carbon tetrachloride can be produced bu the following reaction: $\mathrm{CS}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{CCl}_{4}(\mathrm{~g})$
Suppose 1.2 mol of CS_{2} and 3.6 mol of Cl_{2} were placed in a 1.00 liter flask. At equilibrium the mixture contains $0.90 \mathrm{~mol} \mathrm{CCl}_{4}$. Calculate K
45. The equilibrium constant for the enzyme catalyzed isomerization

D-glucose \leftrightarrows D-fructose
isomerization is 0.81 at $25^{\circ} \mathrm{C} .1$ If 1.75 mol of D -glucose and 1.25 mol of D fructose are mixed and water is added so the solution has a volume of 1 liter in the presence of the enzyme, is the system at equilibrium? If not when it proceeds to equilibrium, which reagent increases in concentration? Calculate the concentrations of the two compounds when the system reaches equilibrium
46. Heating a metal carbonate is necessary to get it to decompose:
$\mathrm{BaCO}_{3}(\mathrm{~s}) \leftrightarrows \mathrm{BaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
Predict the effect on the equilibrium for each
change: left right or no change
a. add BaCO_{3}

b. add CO_{2}
c. $\operatorname{add} \mathrm{BaO}$

e. increase the volume of the flask containing the reaction
47. Ammonium hydrogen sulfide decomposes on heating. $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \leftrightarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
If K_{p} for this reaction 0.11 atm at $25^{\circ} \mathrm{C}$, what is the total pressure in flask at equilibrium?
48. The equilibrium constant, K_{p}, for
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$
is 0.15 at $25^{\circ} \mathrm{C}$. If the pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium is O .85 atm, what is the total pressure of the gas mixture $\left(\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{NO}_{2}\right)$ at equilibrium?

49 (challenging problem). At $450^{\circ} \mathrm{C}, 3.60 \mathrm{~mol}$ of ammonia is placed in a 2.00 L vessel and allowed to decompose to the elements:
$2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
If the experimental value of K is 6.3×10^{-6} for this reaction at this temperature, calculate the equilibrium concentration of each reagent. What is the total pressure in the flask? since K is very low, you may assume that $(3.60-x)^{2}$ in your denominator $=3.6^{2}$

52. $\quad X(g)+Y(g) \leftrightarrows 2 Z(g)$

When 4.00 mol each of $\mathrm{X}(\mathrm{g})$ and $\mathrm{Y}(\mathrm{g})$ are placed in a 1.00 L vessel and allowed to react at constant temperature according to the equation above, 6.00 mol of $Z(\mathrm{~g})$ is produced. What is the value of the equilibrium constant Kc?
53. $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows \quad 2 \mathrm{HI}(\mathrm{g})$

At $450^{\circ} \mathrm{C}, 2.0$ moles each of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{I}_{2}(\mathrm{~g})$, and $\mathrm{HI}(\mathrm{g})$ are
combined in a 1.0 L rigid container. The value of Kc at $450^{\circ} \mathrm{C}$ is
50. Which of the following will occur as the system moves
forward toward equilibrium?
a. More $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ will form
b. More $\mathrm{HI}(\mathrm{g})$ will form
c. The total pressure will decrease
d. No net reaction will occur because the number of molecules is the same on both sides of the equation

rates and equilibrium summary problem

The dissolution of calcium iodide was studied.

1. write the net ionic equation

The rate of dissolution was studied at 25 OC

trial	[calcium iodide]	rate M / s
1	1.0	3.2
2	2.6	8.32

2. Determine the reaction order, rate law, and rate constant
3. When the temperature is increased to $50^{\circ} \mathrm{C}$ the rate is $6.4 \mathrm{M} / \mathrm{s}$ Determine the activation energy.
4. The dissolution was found to have a $\Delta \mathrm{H}$ of $-4.0 \mathrm{KJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$.

Draw an energy diagram, a possible activated complex, and design a catalyst for this process
5. At $25^{\circ} \mathrm{C} 50 \%$ of the Calcium iodide has enough energy to overcome the activation energy, and at $50^{\circ} \mathrm{C} 90 \%$ of it has sufficient energy. Show this graphically
6. The equilibrium of calcium iodide dissociation was studied at $25^{\circ} \mathrm{C}$

The initial concentration of calcium iodide was 2.0 M and upon reaching equilibrium the concentration of iodide was found to be 1.6 M .
Determine the equilibrium constant
7. A $25^{\circ} \mathrm{C}$, Keq for the dissolution of calcium iodate is 0.035 :
$\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \leftrightarrows \mathrm{Ca}^{2+}+21^{-}+3 \mathrm{O}_{2} \mathrm{Keq}=0.035$
Combine this with your data above:
$\mathrm{CaI}_{2} \leftrightarrows \mathrm{Ca}^{2+}+2 \mathrm{I}^{-} \mathrm{Keq}=$ \qquad
to determine the equilibrium constant for the synthesis of calcium iodate:
$\mathrm{Cal}_{2}+3 \mathrm{O}_{2} \leftrightarrows \mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$
8. Suggest four ways to increase the equilibrium for dissolving calcium iodide, and two methods to completely destroy it.

[^0]: [] = concentration in moles/liter

