chemistryacademy high school chemistry

chemistry equations

1. introduction to chemistry

$d=\frac{m}{V} \quad$| $d=$ density; $m=m a s s ~ i n ~$ |
| :---: |
| $g ; v=$ volume in $m L$ |

\% yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \mathrm{cv}$
\% error $=\frac{\text { error }}{\text { accepted valued }} \times 100$
temperature: $\quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
$\circ \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \times \frac{5}{9} \quad{ }^{\circ} \mathrm{F}=\frac{9}{5}^{\circ} \mathrm{C}+32$
3. matter, 4. atom: no formulas
$s=w f \quad e=h f \quad e=h s / w \quad w=h s / e$
$s=$ the speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$w=$ wavelength in meters
= frequency, per second.
$e=$ energy in joules
$h=$ Plancks constant $=6.626 \times 10^{-34} \mathrm{i} \mathrm{sec}$
Balmer formula for hydrogen :

$$
w_{n m}=\frac{1}{.01097\left(\frac{1}{\text { inner }^{2}}-\frac{1}{\text { outer }^{2}}\right)}
$$

$w=$ wavelength in nanometers
inner = inner shell \#; outer = outer shell \#. similarly:
$\mathrm{E}_{\text {hydrogen }}=2.18 \times 10^{-18}$ joules $\left(\frac{1}{\text { inner }^{2}}-\frac{1}{\text { outer }^{2}}\right)$
9. the mole: \quad is an amount! $=6.02 \times 10^{23}$
$\begin{gathered}\text { mol-mol } \\ \text { conversions: }\end{gathered} \quad \operatorname{mol} A \times \frac{\mathrm{mol} \mathrm{B}}{\mathrm{mol} \mathrm{A}}=\operatorname{mol} B$
$\begin{gathered}\text { gram-mol } \\ \text { conversions: }\end{gathered} \quad g A \times \frac{\mathrm{mol} A}{\mathrm{gA}} \times \frac{\mathrm{mol} B}{\mathrm{~mol} A}=\mathrm{mol} \mathrm{B}$

$$
\underset{\text { conversions: }}{\mathrm{mol}-\mathrm{g}} \quad \operatorname{mol} A \times \frac{\mathrm{mol} B}{\mathrm{~mol} A} \times \frac{\mathrm{g} B}{\mathrm{~mol} B}=\mathrm{g} B
$$

10. gas laws

units

P pressure

$V=$ volume (L)
$\mathrm{T}=$ Kelvin Temp (K)
n
$\mathrm{n}=\#$ of moles (mol $)$
$R=0.0821 \mathrm{Latm} / \mathrm{mol} K$
$M=$ molar masses $(\mathrm{g} / \mathrm{mol})$
$d=$ density

formulas

boyles: charles: gay-lussac
combined:
$P_{1} V_{1}=P_{2} V_{2} \quad \frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}} \quad \frac{T_{1}}{P_{1}}=\frac{T_{2}}{P_{2}} \quad \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$ must use K for temperature; other units must cancel ideal gas law:

$$
P V=n R T \quad \text { must use } L \text { atm mol } K
$$

avogadro's law: density formula graham's law:

$$
\begin{array}{ll}
22.4 \mathrm{~L} \\
\text { nole gas at STP }
\end{array} \quad d=\frac{P M}{R T} \quad \frac{\text { rate }_{1}}{\text { rate }_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

$$
\begin{gathered}
\text { partial pressure } \\
\text { partial pressure of gas a }=\frac{\text { moles of gas } a}{\text { total moles of gas }} \times \text { total pressure }
\end{gathered}
$$

11. energy:	
q	$=m c \Delta T$
$q=$ heat, $m=$	mass, $c=$ specific he

$q=$ heat, $m=$ mass, $c=$ specific
$\left(J / g^{\circ} \mathrm{C}\right), \Delta T=$ temp change in ${ }^{\circ} \mathrm{C}$.
energy needed to mel
$c_{\text {water(I) }}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad$ and boil water: $c_{\text {water(s) }}=2.03 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad \Delta \mathrm{H}_{\text {fus water }}=334 \mathrm{~J} / \mathrm{g}$ $c_{\text {water }(\mathrm{g})}=2.01 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad \Delta \mathrm{H}_{\text {vap water }}=2260 \mathrm{~J} / \mathrm{g}$ $\Delta \mathrm{H}_{\text {vap water }}=2260 \mathrm{~J} / \mathrm{g} ; \quad \Delta \mathrm{H}_{\text {fus water }}=334 \mathrm{~J} / \mathrm{g}$ water boils/condenses at $100^{\circ} \mathrm{C}$ water melts/freezes at $\mathrm{O}^{\circ} \mathrm{C}$
1 Nutritional Calorie $=4184$ Joules $=4$ BTU
$=1000$ calories $=0.0016$ kilowatt hours $\Delta G=\Delta H-T \Delta S$
$\Delta G=$ change in free energy $\Delta \mathrm{H}=$ change in enthalpy
$\mathrm{T}=$ temperature
$\Delta S=$ change in entropy

15. acids and bases	
, $\mathrm{pH}=-\log [\mathrm{H}+]$	
K_{a} for example of HCl $=[\mathrm{H}+][\mathrm{Cl}-1 /[\mathrm{HCl}]$	$10^{-\mathrm{pH}}=\left[\mathrm{H}^{+}\right]$
$=[\mathrm{H}+]\left[\mathrm{OH}^{-}\right]=10^{-14}$	$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
	$10^{-\mathrm{POH}}=\left[\mathrm{OH}^{-}\right]$
	$\mathrm{pH}+\mathrm{pOH}=14$
molarity $_{\text {unknown }}=$	
(volume ${ }_{\text {standard }}$) molarity $_{\text {standard }}$)	
volume ${ }_{\text {unknown }}$	

for:
14. equilibrium

$a A+b B \rightleftarrows c C+d D$

$$
K_{e q}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

omit liquids and solids
13. rate
reaction rate $=\Delta_{\text {cor }}$
reaction rate $=\Delta_{\text {concentration }} / \Delta_{\text {time }}$
$M=$ Molarity $=$ moles per liter $=$ moles $/$ liter

$$
\Delta_{\text {concentration }} \text { order }=\Delta_{\text {rate }}
$$

1. percent concentration by volume ($\% \mathrm{v} / \mathrm{v}$) volume of solute $\times 100$ volume of solution
2. percent concentration by mass ($\% \mathrm{~m} / \mathrm{m}$)
mass of solute $\times 100$ mass of solution
3. Molarity (M)
moles of solute Liters of solution
4. molality (m)
$=$ moles of solute Kilograms of solvent
5. mole fraction (X)
$=$ moles of solute moles of solution
6. concentration and dilution 6. $C_{1} V_{1}=C_{2} V_{2}$ where C_{1} and C_{2} are
concentrations;
\qquad
7. Henry's Law:

Solubility is proportional to Pressure $S_{1} / P_{1}=S_{2} / P_{2}$
8. pressure and volume units units
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=14.7 \mathrm{psi}=101.3 \mathrm{KPa}$

$$
1 \mathrm{~L}=1000 \mathrm{~mL}
$$

9. boiling point elevation (ΔT_{b}) and freezing point depression $\left(\Delta T_{f}\right)$ of solutions

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =\mathrm{K}_{\mathrm{f}} \cdot \mathrm{pm} \\
\Delta \mathrm{~T}_{\mathrm{h}} & k_{\mathrm{L}} \mathrm{~m} \cdot \mathrm{pm}
\end{aligned}
$$

$\Delta T_{f}=$ change in freezing temp; $\Delta T_{b}=$ change in boiling temperature; $\mathrm{K}_{f}=$ freezing point in boiling temperature; $\mathrm{K}_{\mathrm{f}}=$ freezing point
constant; $\mathrm{K}_{\mathrm{b}}=$ boiling point constant; $m=$ constant; $\mathrm{K}_{\mathrm{b}}=$ boiling point constant; $m=$
molality; $\mathrm{pm}=$ particle molality (ion count) (K_{f} is for the solvent; pm is for the solute)

Name (include the first name you'd like to be called in class) \qquad Period \qquad
please fill out the survey below to get started.
\qquad Teacher \qquad
2. What did you think of the course and/or the teacher?
3. What do you think of science?

aristolochic acid
4. How hard a worker are you?
5. What do you plan to do after high school?
6. Please let me know the names of any brothers or sisters you had that took my course.
7. Please list any accommodations that you have that you are aware of (extra time on tests, preferential seating, etc.- this would be as a result of a 504 plan or similar)
8. Tell me a little bit about yourself. Long answers are welcome -
14. Always carry a microscope with both hands. Hold the arm with one hand; place the other hand under the base.
15. Treat all preserved specimens and dissecting supplies with care and respect.
a. Do not remove preserved specimens from the science room.
b. Use scalpels, scissors, and other sharp instruments only as instructed.
c. Never cut any material towards you - always cut away from your body.
d. Report any cut or scratch from sharp instruments to the teacher immediately. 16. Never open storage cabinets or enter the prep/storage room without permission from the teacher.
17. Do not remove chemicals, equipment, supplies, or animals from the science room without permission from the teacher.
18. Handle all glassware with care. Never pick up hot or broken glassware with your bare hands.
19. Use extreme caution when using matches, a burner, or hot plate. Only light burners when instructed and do not put anything into a flame unless specifically instructed to do so. Do not leave a lit burner unattended.
20. Dress properly: long hair must be tied back, no dangling jewelry, and no loose or baggy clothing. Wear aprons when instructed.
21. Learn where the safety equipment is located and how to use it. Know where the exits are located and what to do in case of an emergency or fire drill.

I, \qquad AGREEMENT
1, ___, (student's name) have read and understand each of the above safety rules set forth in this contract. I agree to follow them to ensure not only my own safety but also the safety of others in the science classroom or laboratory. I also agree own safety but also the safety of others in the science classroom or laboratory. I also agre accidents and to provide a safe learning environment for everyone. I understand that if I do not follow all the rules and safety precautions, I will not be allowed to participate in science activities.
***Student Signature: \qquad Date:
Dear Parent or Guardian
We feel that you should be informed of the school's effort to create and maintain a safe science classroom/ laboratory environment. Please read the list of safety rules. No student will be permitted to perform science activities unless this contract is signed by both the student and parent/guardian and is on file with the teacher. Your signature on this contract indicates that you have read this Science Safety Contract, reviewed it with your child, and are aware of the measures taken to ensure the safety of your son/daughter in the science classroom.
Parent/Guardian Signature: \qquad Date: \qquad Important questions:

$$
\begin{aligned}
& \text { Does your child wear contact lenses? } \mathrm{Y} \text { or } \mathrm{N} \\
& \text { Is your child color blind? } \mathrm{Y} \text { or } \mathrm{N} \text {. } \\
& \text { Does your child have any allergies? } \mathrm{Y} \text { or } \mathrm{N} \\
& \text { If so, please list: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Does your child } \\
& \text { If so, please list: }
\end{aligned}
$$

science safety quiz

1. If a fire erupts, immediately
A. notify the teacher.
B. run for the fire extinguisher.
C. throw water on the fire.
D. open the windows.
2. Approved eye protection devices (such as goggles) are worn in the laboratory
A. to avoid eye strain.
B. to improve your vision
C. only if you do not have corrective glasses.
D. any time chemicals, heat, or glassware are used.
3. If you do not understand a direction or part of a laboratory procedure, you should
A. figure it out as you do the lab.
B. try several methods until something works.
C. ask the teacher before proceeding.
D. skip it and go on to the next part.
4. After completing an experiment, all chemical wastes should be
A. left at your lab station for the next class.
B. disposed of according to your teacher's directions.
C. dumped in the sink.
D. taken home.
5. You have been injured in the laboratory (cut, burned, etc.). First you should
A. visit the school nurse after class
B. see a doctor after school.
C. tell the teacher at once.
D. apply first aid yourself.
6. Long hair in the laboratory must be
A. cut short.
B. held away from the experiment with one hand
C. always neatly groomed.
D. tied back or kept entirely out of the way with a hair band, etc.
7. Which of the following should NOT be worn during a laboratory activity?
A. loose clothing
B. dangling jewelry
C. sandals
D. All of the above.
8. Horseplay, practical jokes, or pranks in the classroom are
A. always against the rules.
B. okay
C. not dangerous.
D. okay if you are working alone.
9. When handling animals, students should
A. open cages only with permission.
B. not tease or handle animals roughly.
C. report bites or scratches to the teacher immediately.
D. All of the above.
10. If a piece of equipment is not working properly, stop, turn it off, and tell
A. the principal.
B. your lab partner
C. your best friend in the class.
D. the teacher.
11. When you finish working with chemicals, biological specimens, and other lab substances, always
A. treat your hands with skin lotion.
B. wash your hands thoroughly with soap and water.
C. wipe your hands on a towel.
D. wipe your hands on your clothes.
12. The following activity is permitted in the laboratory:
A. chewing gum
B. eating
C. drinking
D. None of the above
13. When using a razor blade or scalpel, always cut material
A. away from you
B. toward you
C. in your hand.
D. perpendicular.
14. Before you leave the science room, you should
A. clean your work area and equipment.
B. return all equipment to the proper storage area.
C. wash your hands with soap and water.
D. All of the above.
15. Draw a diagram of your science room below and label the locations of the following:

- Fire Blanket
- Fire Extinguisher(s)
- Exits
- Eyewash Station
- Emergency Shower
- Waste Disposal Containers
- Fume Hood
- Emergency Shut-off(gas)

True-False

enter T or F
16. \qquad All chemicals in the lab (including foodstuffs and store-bought
17.
\qquad should be treated as if they could be hazardous.
18. \qquad Laboratory work may be started immediately upon entering the
laboratory even if the teacher is not yet present.
19. \qquad Never remove chemicals, specimens, or other equipment from the
labo \qquad
Always carry a microscope using both hands.
20. \qquad Read all procedures thoroughly before performing a laboratory investigation.
22. \qquad All unauthorized experiments are prohibited.
23. \qquad You are allowed to enter the chemical preparation/storage area
any time you need to get an item.
24. \qquad It is okay to pick up broken glass with your bare hands as long as the glass is placed in the trash can.
25. \qquad Do not leave a lit burner unattended.

all about this course

Welcome to chemistry! I look forward to working with you this school year. The purpose of this syllabus is to summarize the goals, content, grading policy, and class expectations for this school year.
what is everything made out of?
That is the essential question for this course- the same question that the we all naturally ask as we look at the world around us. It also makes one wonder why some substances are inert, while other substances react
violently when mixed. For a few of you, opening your mind to the world of chemistry may change the course of your life (or at least your college major), as it did for me. For all of you this course will help you to understand the world around you.

> So, how do we answer this question? Certainly the most enjoyable way is to roll up your sleeves and find out for yourself. Teachers call this inquiry-based learning, and it is very effective (and, hopefully, fun!). We begin each unit by asking a simple question, and you and your lab parner then try to find out on your own. No, not by looking it up on wikipedia- by experiment. What you discover you aren't likely to forget. It gives you a understanding of things that uses all of your senses. And, best of all, although it usually makes you question your own research, there are those rare occasions your own observations may make you question what the "experts" say, or the way that they say it. The best chemist is a skeptical chemist:

The best chemist is a skeptical chemist. An original copy of The Skeptical Chymist (1661) from the University of Pennsylvania. Full text is available as is a scanned copy of the 1661 manuscript
.. by having Thus drawn the Chymists Doctrine out of their Dark and Smoakie Laboratories, and both brought it into the open light, and shewn the weakness of their Proofs,
that have hitherto been wont to be brought for it,
either Judicious Men shall henceforth be allowed calmly and after due information to disbelieve it or those abler Chymists,
that are zealous for the reputation of it,
will be oblig'd to speak plainer then hitherto has been done
Here are the units we will cover. Each chapter will last for 1-2 weeks, and most units will be tested individually. These 15 packets include or will direct you to everything you need to know about chemistry. Students receive paper copies of each packet, and it is online at the class website (chemistryacademy.org)

Robert Boyle

The Skeptical Chymist (1661)

This class uses a "pure points" system: your grade will be determined by the points accumulated from homework, tests, and lab reports. For, example, you might earn 90 points on a 100 point exam, and 5 points on a 10 point quiz. Your average at that point would be 95 points out of a possible 110 total points for an "average" of 86%. Your grade can be accessed on PowerSchool, through the GHS website, also available on the chemistryacademy.com website. Test scores usually incorporate a citizenship component: arriving late to class or being unprepared results in a minor deduction for each occurrence. Assisting others and other meritorious behavior can lead to a small increase in your test score. During any type of testing, there can be no communications in any form with any other student(s). Should such communications take place, the student(s) will receive a grade of zero on the test. Be aware that it is a big deal if your cellphone is out for any reason during a test- this can result in severe consequences.

What to bring to class

All parents should receive an email a few days before the first day of class outlining what each student should bring on day 1 . Each day students should bring:

1. A laptop or tablet. If you don't have one a chromebook will be supplied to you in class. Check for updates on this since the school policy is somewhat fluid at this point
2. A chronologically organized small 3 ring binder that includes the current semester of handouts, all additional handouts, and tests.

3, Loose leaf paper in the binder.

4. A scientific calculator

5. A pen or pencil

6. Your homework
7. Ear buds or Headphones for listening to screencasts
8. A chromebook or laptop.

On the first day of class you will receive this chapter, and each chapter will be handed out a the end of the previous one..Notebook checks occur during tests (5 points each), mostly to see that you are taking effective notes and completing all worksheets, and staying organized late homework.
in this class extensive use will be made of screencasts which include a scored follow-up quiz. Have a look at them at the chemistryacademy.org website; stay tuned for further details.

Absences and Makeup Tests
If you missed a class it's easy to find out what you missed. The weekly schedules and homework are posted in class and on chemistryacademy.org. Rather
than asking what you missed when you return from an absence, come in with your homework completed. For extended absences, check in with your than asking what you missed when you return from an absence, come in with your homework completed. For extended absences, check in with your
instructor to schedule any makeup work. Note that an absence does not excuse you from your work; you will receive a zero until the work is made up. F
With the exception of the hands-on labs, this class is fully set up for distance learning. All lectures have screencasts that can be viewed online, and each chapter is available online. Use your packet, go online. Watch the screencasts for each lecture. Complete the worksheets. Email me if you get stuck. Call your friends. Please try to avoid asking me "What did I miss?" - check powerschool first. Instead, say hello when you return to class and let me know that you are on track. Be aware that you will still have to take the test on the day scheduled, or soon after your return if you for excused absences.

Makeup tests are available for verified absences. Sorry, no retests

This course uses a series of chapters which are available online. Students are given a hard copy of each successive chapter during each chapter test
Cellphones
Please don't take out your cellphone without permission. If it is impeding your work it may be confiscated.

Media Privacy

Occasionally there may be photographs or videos taken of us in the classroom. Although these are usually popular with the students and are good for class morale, it is important for each student to know that their right not to be photographed or videotaped is important and will be respected. Additionally, any photos or videos that are taken in the classroom will never be shared outside the classroom. Each student was mailed a media privacy form at the beginning of the year. Please let me know if you prefer not to be photographed or videotaped.

Welcome to Chemistry! Please email me if you have any questions.
Dr B

Common Issues

1. Late to class

Students who are late to class without a pass will receive a minor point deduction on their next test. Two tardies results in an email to your parents. Three tardies leads to a detention.
2. Arriving unprepared. Students who do
beginning of class
3. Cellphones visible in class

Once class begins, any cellphone seen will result in a 5 point deduction on the next test. Additional consequences such as detentions may follow.
4. Lab Groups of more than 2

To receive credit for a lab experiment your group must be no more than 2 students
4. Absences and makeup tests

Unexcused absences are treated in accordance with the student-parent handbook. Students are responsible for making up lost work and will still have to take each test. There are no makeups, but students may drop one test per quarter
5. Homework from other classes

Will be confiscated if students work on it in class unless specifically instructed otherwise.
6. Students not seated or not in assigned seats

Please remain seated in your assigned seat unless instructed otherwise to me marked as present
7. Unsafe laboratory practices

This is a serious offense and will result in immediate removal from class and administrative action.
\qquad
safety warnings:
flames present
alcohols are toxic and flammable

flame lab

an opportunity to safely light things on fire and identify unknown samples \square
Each of you will be given authentic control samples of water, methanol, ethanol, propanol, isopropanol, and butanol, as well as unknown numbered samples of each of those six substances.
Your goal is to identify each. unknown sample by matching it with the control sample. It is suggested that you safely ignite each sample and observe the flame, and complete the tables below.
Consider identifying features such as the odor, flame color, and solubility in water of each sample. For your other observations, you can use any method you like to identify these samples as long as you work safely. Goggles must be worn. Never light a match without permission. Tie your hair back, and listen carefully to the safety instructions provided by your teacher. You must have signed the safety agreement (parents too) and completed the safety quiz to perform this fun but dangerous experiment.

Complete the data tables below. All blocks must be completed:

control samples			
sample	odor	flame color	Other observations must be completed
Water	none	none	answers vary
Methanol	faint	blue	answers vary
ethanol	answers vary	yellow and blue	answers vary
propanol	rubbing alcohol	yellow and blue	answers vary
isopropanol	rubbing alcohol	yellow and blue	answers vary
butanol	distinct strong	yellow and blue, long lasting	answers vary

unknown samplese					
unknown \#	odor	flame color	Other observations must be completed		
1	answers vary	yellow and blue	answers vary		
2	none	none	answers vary		
3	distinct	yellow and blue	answers vary		
4	rubbing				
alcohol				yellow and blue	answers vary
:---:					
5					

COnclusions: identify each unknown sample based on your data above. After that, clean up, receive your cleanup stamp, and answer the questions on the next page.

| 1. ethanol 2. water 5. butanol 4. propanol methanol 6. isopropanol |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. You are given the chemical structures of each substance on the right. Water has a molecular formula of $\mathrm{H}_{2} \mathrm{O}$, ethanol has a formula of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$. Provide the formulas for the others.

$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{4} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
water	methanol	ethanol	ropanol	sopropan	utanol

$$
\text { water: } \mathrm{H}
$$

these are known as the HONC rules of bonding: $\mathrm{H}, \mathrm{O}, \mathrm{N}$, and C tend to form $1,2, \underline{3}, \underline{4}$, and 4 , bonds respectively.
4 As for most combustion reactions, each of these combustion reactions combines the alcohol with oxygen to form carbon dioxide and water. This is a theme we will return to throughout the year. We can write a chemical reaction:

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { e...how can we start with two carb }
\end{aligned}
$$

n-propanol
H H H
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{H}$
H
H
H H
something is wrong here...how can we start with two carbon atoms but only end with one?
Taken literally this says that one molecule of ethanol combines with one molecule of oxygen to make one molecule of carbon dioxide and one molecule of water. The problem is that this is impossible as written. Note for example that we started with two carbon atoms, and ended with one. We fix
it by balancing it:

$$
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

convince yourself that all atoms are retained by this equation
isopropanol:

Note that now that nothing has magically disappeared or appeared - there are the same number of atoms for each element: $C(2), H(6)$, and $O(7)$
Ok, your turn. Write a balanced chemical equation for the combustion of butanol $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$
butanol:

$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ ${ }^{+}$ \qquad
\qquad \rightarrow \qquad O_{2} $+$ $-\mathrm{H}_{2} \mathrm{O}$ hexane
5. On the right is the structural formula for the major component of gasoline: hexane, ($\mathrm{C}_{6} \mathrm{H}_{14}$). Note that if you "branch" the molecule (see 3-methylpentane on the right) it can be drawn in more than one way-these are called isomers: substances with identical molecular formulas, but different structures. Two isomer of hexane are shown. Draw as many additional isomers of hexane as you can below. Hints: don't just bend it- they bend on their own. Try branching it differently. There are five possible isomers.

Draw the five isomers with molecular formula $\mathrm{C}_{6} \mathrm{H}_{14}$: note the HONC rules of bonding are obeyed.
3-methylpentane: an isomer of hexane it is "branched" at carbon 3

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\left.\right|_{\mathrm{C}} ^{\mathrm{C}}}{\stackrel{\mathrm{CH}_{3}}{\mid}-\mathrm{CH}_{3}}
$$

H H H H
H-C.C-C-C-O-H
HH H H

these are called condensed structures
another hint: Consider branching at the second carbon, two branches at the second carbon, and at the second and third carbon atoms. Note that these molecules are flexible- changing the bond angle does not create a new substance. Placing the branched carbons on top or bottom doesn't matter- they can rotate.
6. Write a balanced chemical equation for the combustion of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$. The products are carbon dioxide and water.
\qquad $+$ \qquad \rightarrow \qquad $-{ }^{+}$ \qquad
7. Write a balanced chemical equation for the combustion of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$. The products are carbon dioxide and water.

$$
\begin{aligned}
& \text { ote that it is a bit easier to draw hexand } \\
& \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \\
& \text { or } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
\end{aligned}
$$

\qquad
\qquad
\qquad $+$
\qquad period
lab 1.2
lab 1.2 molecular model lab
an opportunity to see what molecules look like
what do molecules look like?
To really understand what everything is made out of, we need to magnify things down to a molecular level. In the flame lab, we were shown the molecular structure of ethanol. Here are several different ways of representing that molecule:
all of these are correct for ethanol; but some provide more information than others.

$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$		
molecular			
formula			condensed
---:			
structural			
formula			

(제

and perhaps the most useful of all: a genuine image (in this case of pentacene)

skeletal formula
skeletal formula H added to show alcohol functional group

structural formula with stereochemistry

molecular model
ball and stick

molecular model space filling

The three most common atoms attached to organic
(carbon based) molecules are hydrogen, oxygen, and nitrogen. In the flame lab you observed that these tend to form the same number of bonds: $\mathrm{H} 1, \mathrm{O} 2, \mathrm{~N} 3$, and C4. For convenience the same colors are used to assemble these molecules; there are also colors for some of the less common elements.
the HONC rules are significant: over 95% of our body is composed of those four elements.

1. Using the molecular models at your desk, assemble a molecule of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$ using the color conventions listed. Draw it using both structural and skeletal formulas
structural formula of one
isomer of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

skeletal formula of one isomer of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
2. There is one other way $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ can be assembled with the proper number of bonds on each atom (HONC). Assemble it and draw it using both structural and skeletal

structural formula of another isomer of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
skeletal formula of another isomer of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
each carbon should have 4 bonds, one for each hydrogen, and two for

To help "see" molecules we will practice making molecular models, and then drawing those molecules in various ways.

1. Assemble each molecule (some can be assembled more than one way). Show your instructor your models when you are finished and receive a stamp. Use the HONC rules for bonding: $\mathrm{H} 1, \mathrm{O} 2, \mathrm{~N} 3$, and carbon tends to form 4 bonds.

2. Draw the structural formula for each model. Refer to the previous page if you need to.

3. Draw the skeletal formula for each model. Note that for oxygen and nitrogen (sometimes called "heteroatoms") it is common to draw each hydrogen explicitly for a skeletal formula to avoid confusion.

4. Are isomers possible? These are other was to assemble your molecule. If there are, draw the structural formula. If not, write "no isomers"

5. Here are some more complex molecules. Complete each row of the table below; you may look up the structure of leucine.
molecular formula

\qquad period \qquad

botanical art project

One of the most enjoyable aspects of chemistry is that it is a great tool for solving mysteries. Each day people use chemistry to solve crimes, heal, and identify mysterious substances. In this lab you will bring in a plant, and learn as much about it as you can.

The chemistry-related goal of this project is to find out the unique substances in your plant and then to create a framed botanical drawing. Every plant contains a bewildering assortment of chemicals, some of which are unique to that plant those are it. We are particularly interested in those unique natural products that your plant produces. We will summarize the biological and chemical aspects of your plant with our botanical art project. A sample completed project is shown below - model your work using it.

Instruction

Part one: bring in a labeled plant, and any art supplies you need to precisely represent it. Due \qquad 5 Bring in a safe plant and fill out the information below

1. Common name of plant: \qquad -

birthwort

Clearly label your plant with those pieces of information and bring it to class. In this experiment you will create a framed botanical drawing of your plant, and identify the natural products it contains.
Part two: Create a framed two page botanical drawing and description of your plant. An example is shown at the bottom of this page. Note that both pages use parchment given to you and use an old fashioned font of your choice. Due
The first page contains:
/5 A hand-drawn botanical art drawing of a plant (up to 15 points for neatness and utility; important parts drawn separately; see the bottom of this page for examples). Also include the Latin (genus and species) and common name of the plant.
Remember, the idea is that someone could easily identify your plant using this work of botanical art.
The second page will have
5 A chemical structure of at least one natural product present in that plant (up to 5 points if drawn correctly and medically significant)
\qquad 5 The name of the chemical below the drawing (5 points)
—_/5 The common name of the plant with the scientific name beneath it, (5 points)
-_ 15 A description of the plant and the natural products it contains(5 points)
$/ 5$ To support your claims include one relevant reference about your plant from Google Scholar. This entire article must be available online; your instructor will show you how to do this. Format as follows: Authors, title, journal, (year), volume, pages. Available on line at (include hyperlink).
$/ 5$ Print the entire article and include it in your submission.
__ $/ 5$ Your name at the bottom right of the page (5 points)
—_I5 All text uses an old fashioned font (5 points)
_/5 The type of paper used paper should be parchment, or old fashioned as well. (5 points)
___/5 Each page is framed. Please bring in your own; they can be provided if necessary.

/5 this pa

checked and
submitted.

Aristolochia clematitis (birthwort)

Here is an example of a finished botanical art project. Note how it is on parchment and the hand drawing includes close-ups of important parts, and describes the common and scientific names of the plant

On the second page, note how the medicinal aspects of the plant are described, and a medicinal natural product is drawn and named.

Finally, note how this work is supported with two peer-reviewed scientific papers, and the citations do not include websites.

Model your own project based on thi
one
botanical art project exemplar

note common and scientific name provided, old fashioned font used, botanical art includes blowups or unique regions of plant

Aristolochia clematitis

(birthwort)

The species A. clematitis
(birthwort) was highly
regarded as a medicinal plant
forover two thousand years. A
preparation was given to
women in laborto expel the
placenta, as noted by the
herbalist Dioscurides in the first

aristolochicacid
century AD. ${ }^{1}$ Despite its
presence in ancient medicine,
Aristolochia is known to
contain the lethal toxin
aristolochicacid. ${ }^{2}$

1. Heinrich M. Chan), Wanke S. Neinkais C Simmonds MS (Angast 2009). Loal ases of Aratolocha speces and content of neperotaxic anstolochic acd 1 and 2-a globe zasesment hesed on biblograph sooncest. .
Etlinopharmacol 123 (1) 108-44

> 2 De Broe ME (Varch 2012). "Chinese berbs nephroputy and Belan endemic neplropaty; tovand a single entity, wistolachic rid nephropathy". Kidne/ int G1 (6): 513-5. your name here
note interesting description of plant and uses, labeled relevant chemical structure, and properly formatted peer reviewed source from google scholar.
Note: Please add a hyperlink to journal article.

trostatoof chemistry

why chemistry is awesome:
yes, we blow stuff up
provide molecular answers
make a difference: cancer... pain... energy..
gateway to great fields- medicine, engineering,...
chemistry is
the study of matter and how it changes

a chemical is:

a pure form of matter (a substance)
ok...what is matter?
anything that has mass and takes up space. is it matter?
you? yes
air?
yes
compare mass and weight: mass: how much matter is in an object. Location independent. Weight is gravity dependent.
an idea?
no
energy? no religion? no
a perfect vacuum? a black hole?
theoretically, no
chemists what do chemists do: they all
study matter what kind of chemist am l?

the "ohec" scientific method
what might each letter stand for?
oh heck I know that
example:

classification of matter

a pure form of matter: \qquad
substance
mixture:
a sample containing more than one substance:
matter a substance that cannot be separated into simpler substances by chemicalmeans: element
element, compound, or mixture?

a substance composed of atoms of	
two or more elements chemically	compound
united in fixed proportions.	molecule

united in fixed proportions. molecule

nothing is pure in this world. what can we say about mixtures?
classify a drop of blood:
looks pure but isn't one thing visible
homogeneous mixture
"a solution"

gold
element ocean
classify granite:

suggest a solution:
gas-gas:
air
doesn't look pure multiple things visible
solid-liquid:
gas-liquid:

$$
\begin{gathered}
\text { salt water } \\
\text { soda }
\end{gathered}
$$

\square solid-solid: brass; steel
purification: how would you separate these mixtures?

physical vs. chemical
chemical property:
reacts- new substance(s) formed
physical property:
no reaction- same substance all along.
suggest the property responsible and if it is physical or chemical:

extensive and intensive properties

crystalline (shiny)

Here are the skeletal formulas of some common types of organic compounds, known as functional groups.
what types of organic molecules are there?

The groups shown above generally contain more hydrogen and less oxygen as one reads across from alkanes to carboxylic acids: they become more oxidized.

Each student should be able to recognize and draw these functional groups.
balancing chemical reactions

$$
\begin{gathered}
\underline{2} \mathrm{Na}+\ldots \mathrm{Cl}_{2} \rightarrow \underline{2} \mathrm{NaCl} \\
\underline{2} \mathrm{NH}_{3} \rightarrow \underline{N_{2}}+\underline{3} \mathrm{H}_{2} \\
\frac{2}{1} \mathrm{C}_{4} \mathrm{H}_{10}+\frac{13 \mathrm{O}_{2}}{6.5} \rightarrow \frac{8}{4} \mathrm{CO}_{2}+\frac{10}{5} \mathrm{H}_{2} \mathrm{O} \\
13 \mathrm{O}
\end{gathered}
$$

Now when we look at an organic compound like, say, morphine, we can identify the parts the functional groups- it contains:
alcohol (again) \longrightarrow

The skeletal formula of morphine, a powerful and powerfully addictive painkiller

Note that there are only four elements shown- hydrogen, oxygen, nitrogen, and carbon. Count the number of bonds each element contains. You'll find that hydrogen forms one bond, oxygen two, nitrogen three, and carbon four bonds. Remember this by using the mnemonic device: HONC if youlovechemistry(H1, O2, N3, C4). The bonds can be single, double (note the two lines together in acetone and benzaldehyde), or even triple. The molecules may be straight chains like ethanol, branched like triethylamine, or rings, like cyclohexane and benzaldehyde. With the simple HONC bonding pattern we can assemble all sorts of molecules.

Both cyclohexane (left) and methyl-cyclopentane (right) have a molecular formula of $\mathrm{C}_{6} H_{12} ;$ they are isomers. The structural formulas are shown on the left, the skeletal formulas are shown on the right.

Consider cyclohexane, for example. This molecule contains six carbon and twelve hydrogen atoms per molecule: it has a molecular formula of $\mathrm{C}_{6} \mathrm{H}_{12}$. However, there are many other molecules with the same molecular formula- these are called isomers: different substances with the same molecular formula. Here are two examples:

Drawing these molecules showing every carbon and hydrogen can become tedious. To simplify drawing these organic (carbon-based) molecules, skeletal formulas are used more often.

Note that every endor bend in a line of a structural formula implies a carbon atom, and the hydrogen atoms are omitted. They are implied based on the fact that carbon contains four bonds. Atoms other than carbon or hydrogen are called heteroatoms, and are explicitly drawn, usually with their hydrogen's as well.

Stereochemistry

A big limitation of these 2-dimensional representations of molecules is that they give us no 3-dimensional information. Consider the molecule shown at right. If you assemble it using molecular models, you can place the two chlorine atoms adjacent to each other, or far away. These are clearly different molecules. To designate their structure two types of bonds are used: wedges (coming toward you) and hatches (going away from you). Note that molecules that are more spread out tend to be more stable, as one might predict.

Scientists often use molecular models, since they are a fairly good representation of what the molecule looks like. If you assemble organic structures using single,
double, and triple bonds, you can get a good idea of bond angles: single bonds: C-C- bond angle of 109.5° double bonds: C-C-C bond angle of 120° triple bond are linear (bond angles of 180°
\qquad period \qquad

1. $\ldots \mathrm{CH}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
. $\mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
2. $\quad \mathrm{Mg}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{MgO}$
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+\ldots \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
3. $_\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+\ldots \mathrm{O}_{2} \rightarrow-\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { 6. }-\mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow-\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \\
& \text { 7. }-\mathrm{S}_{8}^{+}-\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} \\
& \text { 8. } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\overline{\mathrm{O}_{2}} \rightarrow-\mathrm{CO}_{2}+\underline{\mathrm{O}_{2}} \mathrm{H}_{2} \mathrm{O} \\
& \text { 9. }-\mathrm{CO}_{2} \mathrm{H}_{2}+-\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \\
& \text { 10. }-\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}+-\mathrm{O}_{2} \rightarrow-\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{N}_{2}
\end{aligned}
$$

fill in the blanks.

[^0]-balance C , then H , then O -total the O^{\prime} s on the right, adjust O_{2} on the left
-if you got all even numbers, divide by 2
hints: bent or fipped forms are not isomers. Try branching and rearranging; make sure the molecular formulas match. draw as many isomers as you can

21			
22			
23			(one possible)
24			
25			(four possible)
		(three possible)	

26. molecular formula

Answer the following questions based on the chapter 1 screencasts
learn an overview of what chemistry is all about

1. What is chemistry?

4. I synthesize
experimental medicines
Tor Pizer in Groton, $C T$.
:---
in tree frogs. What type
of chemist am I?

6. I determine the molecular structure of
substances using a Nuclea Magnetic
Resonance Spectrometer (NMR). I am what
type of chemist?

$$
\begin{aligned}
& \text { 9. Schools need to carefully consider the chronological order that classes are taught in. For high school science, many schools are modifying their system so the courses are } \\
& \text { taught in the order physics, then chemistry, then biology. Consider the advantages and disadvantages of this system. } \\
& \text { Advantages of this system: } \\
& \text { Disadvantages of this system: }
\end{aligned}
$$

> Should your high school use this system? Defend your answer.
10. You are designing lightweight, bulletproof body armor. Suggest a positive control:
11. Your are synthesizing experimental medications for pain. Suggest a negative control:
12. To help us remember a simplified form of the scientific method, we memorized a four letter mnemonic, \qquad , which spells out the four principal steps: \qquad - \qquad __ we memorized nd \qquad
13. It has been said that chemistry can solve any problem that is based on matter. To really do this, one must think on a molecular level Try to do this as you answer this question.
Your task is to create a new, effective, environmentally friendly insect repellant. How would you accomplish this? Before answering, read the brief article on "Structure-Activity Relationships" on the wikidpedia website or by clicking here..
14. We are on average 95.3% carbon, hydrogen, oxygen, and nitrogen. In this unit we learned a simple mnemonic to recall the number of bonds that each element commonly forms. The mnemonic is " \qquad bonds, oxygen forms \qquad onds, nitrogen forms \qquad bonds, and carbon is very versatile in that it tends to form bonds.

Draw propanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$ using both structural and skeletal formulas

15. Structural formula of propanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$

a ball-and-stick model of n-propanol $\left(\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)\right.$

16. Skeletal formula of propanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$
17. There are two isomers of propanol. Both have the alcohol " $\mathrm{OH}^{\prime \prime}$ functionality. Draw the other isomer using a skeletal formula. Hint- you may need to move the oxygen atom.
18. Draw two isomers of propyne shown below

propyne $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)$ contains a
carbon-carbon triple bond.
19. Single C-C-C bonds have a bond angle of 109.50, double bonds ($C=C-C$) 120°, and triple bonds 180°. Label the bond angles and provide the molecular

21. Circle the 2 identical molecules. Hint: Rotate and flip the molecules to see if they are identical. Stuck? Make them using models. Review stereochemistry if needed.

Remember, the wedges are coming out at you, the dotted bonds are going away from you- this is stereochemistry
\qquad period

All living things are composed primarily of individual molecules which have different arrangements of hydrogen, oxygen, nitrogen, and carbon, with numerous other less abundant elements. These organic (carbon based) substances are the basic molecules of life. Some are small, such as ethylene, which is a four atom plant hormone that signals for cell growth. Others, like DNA are large and polymeric (consisting of repeated linked units) and can consist of more than a million atoms bonded together.

Carbon-based molecules can be very small or very large. Ethylene is a plant hormone which has only four atoms, and is less than 200 picomenters (0.00000000002 meters) across, while DNA can include millions of atoms and may be long enough to see with the naked eye.

Carbon-based substances are so ubiquitous that chemists organize matter as being carbon based (organic) or not (inorganic). Inorganic substances can be metallic, like aluminum for example, can be rusty (oxidized) forms of metal like aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, can be salts like sodium chloride, or can simply be water ($\mathrm{H}_{2} \mathrm{O}$). Carbon based substance can be classified by their functional groups, as we have seen, and other substances may be organometallic like chlorophyll, containing an inorganic metal atom within a carbon framework.

The structure of chlorophyll

In this worksheet we will practice drawing and identifying functional groups

Draw molecules which include the functional group or groups indicated. Refer to the lecture on the previous page only if necessary. 1. alkyne

5. Alkene and alkane
\square
2. ester

6. Cyclic ketone (a ketone that is part of a ring
7. A cyclic ether
3. alcohol
4. amide

8. Draw a molecule which contains a ring and any four functional groups, and identify each one
worksheet 1.3: organic functional groups (continued)
Shown below are some naturally occurring organic molecules. Circle the functional groups indicated on each

Aristolochic acid is present in birthwort, a member of the

he aristolochia genus. Used in traditional Chinese medicine, it is unfortunately carcinogenic, mutagenic, and nephrotoxic.
9. Locate the carboxylic acid, ether (done for you), and cyclic ethers.

cocaine
Cocaine is an illegal highly addictive nervous system stimulant.
11. Circle and label the amine, esters, and the six-membered benzene ring

Vitamin B_{12} is a vitamin that is necessary for the metabolism of every cell in the human body. Interestingly it is not present in any plant, and contains the biochemically rare element cobalt Watch the oline vide to learn more about how this vitamin works 10. On, vitamin B12 above, circle and label an amides, nitrile (carbon triply bonded to nitrogen), and an alcohol.

Caffeine is a legal central nervous system stimulant, and the worlds most widely consumed psychoactive substance.
Many of the functional groups in caffeine are so close to each other that they overlap. For example, one can identify several amides; however one can still locate individual parts.
12. On the caffeine molecule above, circle and label two carbonyl groups (carbon doubly bonded to oxygen), three methyl groups (carbon with three hydrogen's), and one imine (carbon doubly bonded to nitrogen)

Each chapter ends with a "how to ace it" guide that contains sample questions. Students should complete it. Before the test be sure to also review the screencasts and associated quizzes, all lab experiments, and each page in this chapter. Students in advanced classes should also review any advanced lecture topics and should review any hyperlinked material in this chapter.

How to ace the introduction to chemistry unit.

All battles are decided before they begin.

I'm sure you would all like to ace your first chemistry test. Here's how:

1. Test yourself on the topics below to see what you know and don't know.
2. Review this packet in its entirety. Be familiar with each of the topics that were covered in the powerpoint presentation
3. Write down what you don't know yet. If you don't know something, ask a friend or ask me
4. If you are missing anything it may be available on the class website: http://www.chemistryacademy.org
5. What is chemistry?
6. What is matter?
7. What is not matter? Give examples.
8. What do chemists do?
9. Where does chemistry fit in with the other branches of science?
10. Name a branch of science more basic than chemistry.
11. List the branches of science from basic to applied.
12. What is our simple scientific method?
13. Give an example of a positive and negative control
14. What is a synonym for a negative control?
15. Why are negative controls important for most drug studies?
16. Provide a positive control for an experiment designed to produce bubble gum that blows big bubbles
17. How many bonds to the atoms C, N, H, and O form?
18. What is a useful mnemonic device for the bonding pattern of hydrogen, oxygen, nitrogen, and carbon?
19. omit
20. omit
21. Why is chemistry awesome?
22. Compare and explain the flammability of liquids to gases.
23. True or false: most combustion reactions produce water
24. What is the difference between a physical and a chemical change?
25. Provide an example of a physical and a chemical change.

26. How could you identify methanol?
27. Provide two isomers of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ by drawing their structural and skeletal formulas
28. Draw an ether with the formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
29. Draw an amine, an alcohol, a carboxylic acid, an ester, and an amide.
30. Provide the molecular formula of leucine shown on bottom
31. What organic functional groups are present in sodium chloride, NaCl ?
32. Explain what is implied by the wedges and hatches used in the drawing of leucine. Does it contain straight chains, branched chains, or rings?
33. What happens to molecular formulas when double bonds replace singe bonds and rings replace linear molecules? (Hint: check the molecular formulas).
34. omit
35. Draw a chart organizing chemistry into functional groups, including inorganic, and organic domains on a separate page.
36. Provide a balanced chemical equation for the combustion of isopropanol, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
37. Be prepared to answer the essential question for this course: What is everything made out of?
38. Be prepared to answer the essential question for this unit: what is chemistry all about?
39. Show all of the possible phase changes between solids, liquids, gases, and plasmas
40. What is a plasma? Why is it called a "non-classical" phase?
41. List the functional groups from alkanes through carboxylic acids.

[^0]: 菨

