energy

international baccalaureate higher level chemistry
\qquad

The symbol used in thermodynamics for heat of reaction at constant pressure is $\Delta \mathrm{H}$. In an exothermic reaction, heat is liberated and the value of $\Delta \mathrm{H}$ bears a negative sign, indicating that heat is released to the surroundings.

The results are shown as a thermochemical equation:

$$
\mathrm{ZnO}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-91 \mathrm{~kJ}
$$

When the pressure is 1 atmosphere (atm), thermodynamic properties are termed standard, and the enthalpy change is symbolized ΔH. Reference values of $\Delta H o$ and ΔH of (see the following discussion) are usually tabulated at 298 K .

Since ΔH varies little with temperature or pressure (especially for reactions in solution), you should expect close agreement between your experimental values and tabulated values of standard enthalpy changes, $\Delta \mathrm{Ho}$ and $\Delta \mathrm{Hof}$.

In this experiment you will carry out the following reactions:

$$
\begin{align*}
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{qq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}_{1} \tag{1}\\
\mathrm{MgO}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}_{2} \tag{2}
\end{align*}
$$

In both reactions (1) and (2) above, the $\mathrm{HCl}(\mathrm{aq})$ is in excess, thus the $\Delta \mathrm{H}$ values are dependent upon the mass of $\mathrm{Mg}(\mathrm{s})$ or $\mathrm{MgO}(\mathrm{s})$ used. To find $\Delta \mathrm{H}_{1}$ and $\Delta \mathrm{H}_{2}$ above, first find the amount of heat associated with the reaction by

$$
q_{\text {acid }}=C_{\text {acid }} m_{\text {acid }} \Delta t_{\text {acid }}
$$

(assuming $C_{\text {acid }}=C_{H 2 O}$ and the $d_{\text {acid }}=d_{H 2 O}$) according to the solution. Dividing these values by the moles of Mg or MgO used will give the $\Delta \mathrm{H}$ values in $\mathrm{kJ} / \mathrm{mol}$. Hence...

$$
\begin{aligned}
\Delta H_{x}= & q_{\text {reaction }} \text { (which equals } q_{\text {aciic }} \text {) } \\
& \text { moles of } M g \text { or } M g O \text { used }
\end{aligned}
$$

According to Hess' law, when one adds two chemical reactions one must also add their ΔH 's to obtain ΔH of the combined reaction. A similar rule holds for subtraction. Thus, subtracting reaction (2) from reaction (1) gives:

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{3}=\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}
$$

For any reaction in which a single compound is formed from its elements in their standard states, the enthalpy change is symbolized Δ Hof, the heat of formation of the compound. Standard tables of Δ Hof are available for most common compounds, and from them one can obtain ΔH o for any reaction by the following scheme, which can be demonstrated easily by Hess' law:

$$
\Delta \mathrm{Ho}_{0}=\Sigma \Delta \mathrm{H}_{0} \mathrm{f} \text { (products) }-\Sigma \Delta \mathrm{H}_{0} \mathrm{f} \text { (reactants) }
$$

Since $\Delta \operatorname{Hof}\left(\mathrm{H}_{2} \mathrm{O}\right)$ is readily measurable and is well known, you can apply the preceding method to deduce $\Delta \mathrm{Hof}(\mathrm{MgO})$ from your data,

$$
\Delta \mathrm{H}_{3}=\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}=\Delta \operatorname{Hof}(\mathrm{MgO})+\Delta \operatorname{Hof}\left(\mathrm{H}_{2}\right)-\Delta \operatorname{Hof}(\mathrm{Mg})-\Delta \operatorname{Hof}\left(\mathrm{H}_{2} \mathrm{O}\right)
$$

Note that by definition $\Delta \operatorname{Hof}\left(\mathrm{H}_{2}\right)$ and $\Delta H o f(M g)$ must be zero. Hence:

$$
\Delta H \circ f(\mathrm{MgO})=\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}+\Delta \operatorname{Hof}\left(\mathrm{H}_{2} \mathrm{O}\right)
$$

You can check your result against the literature value of $\Delta \mathrm{Hof}(\mathrm{MgO})$, which is well established. By using the tabulated $\Delta \mathrm{Hof}$ values for $\mathrm{HCl}, \mathrm{MgO}$, and $\mathrm{H}_{2} \mathrm{O}$, you can, using Hess' law, deduce ΔH of $\left(\mathrm{MgCl}_{2}\right)$ for each of your experiments, (1) and (2). and see how closely they agree.

Thus, in this experiment, we are determining the heat of the reaction of magnesium metal with hydrochloric acid and also of magnesium oxide with hydrochloric acid, using a simple styrofoam coffee cup calorimeter. The data obtained can then be combined with the known value of the heat of formation of $\mathrm{H}_{2} \mathrm{O}$ to determine the heat of formation of MgO .

1. Clean and prepare the calorimeter for the experiment.
2. Measure out 100.0 mL of 1.0 M HCl , using a graduated cylinder, into the calorimeter
3. Put the lid on
4. Suspend a digital thermometer in the HCl through a holein the cover.
5. Cut about 22 cm of Mg ribbon, cleaning it using sandpaper before weighing to the nearest 0.001 g .
6. Record the initial temperature of the HCl .
7. Cut the $M g$ into pieces no more than 2 cm in length; then add it to the HCl through the blue lid. Close the lid.
8. Stir occasionally with the thermometer and observe the temperature.
9. Record the maximum temperature
10. Make a second determination following Steps 1-7. Compare the data between the two trials. If the data looks consistent, move on. If not, complete a third trial by following steps 1-7 again.
11. Repeat Steps $1-8$, using approximately 0.5 g of powdered MgO instead of Mg metal (In the MgO experiment, be careful in handling the powder to ensure that it all gets into the HCl . Stir it right away to disperse it before it cakes on the bottom and overheats the solution locally).

CALCULATIONS/QUESTIONS. Provide your answers on a separate sheet of paper and hand it in.
The calculations for this lab will consist of the following :

1. As was described in the THEORY section, obtain $\Delta \mathrm{H}_{1}$ and $\Delta \mathrm{H}_{2}$; then combine these with $\Delta \mathrm{Hof}\left(\mathrm{H}_{2} \mathrm{O}\right)$ from a table to find $\Delta \operatorname{Hof}(\mathrm{MgO})$. Show your work and. results below
2, Comparing your value of $\Delta \mathrm{H}$ of (MgO) to the literature value, calculate the percentage error.
2. Another way to evaluate the consistency of your measurements is to use your values of $\Delta \mathrm{H}_{1}$ and $\Delta \mathrm{H}_{2}$ in conjunction with the literature value of $\Delta \mathrm{H}$ of for $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, and MgO to calculate $\Delta \mathrm{H}$ of of $\mathrm{MgCl}_{2}(\mathrm{aq})$. Do this first for reaction (1), then reaction (2). Average your experimental values for $\Delta \mathrm{Hof}$ of $\mathrm{MgCl}_{2}($ aq $)$ and compare it to the literature value in terms of a percentage error (from the Handbook of Chemistry and Physics: $\Delta \mathrm{H}_{f}$ of $\mathrm{MgCl}_{2}(a q)=-801.15 \mathrm{~kJ} / \mathrm{mol}$).
3. n this section of the discussion, you will examine the probable error in a number of factors in your determination to see their relative importance and to appreciate the refinements necessary to make precise thermochemical measurements. For each case, comment on the magnitude and direction of this error, as compared to other errors in the method.
4. What is the uncertainty in reading your thermometer? Express this as a percentage of ΔT in a typical experimental run
5. Do the same procedure as in (a) for your balance.
6. Do the procedure as in (a) for your graduated cylinder.
7. List at least two other sources of error that played a role in this experiment. Describe the effect the error had on the data collected.

CONCLUSION

Please summarize the results of your lab with a brief conclusion.

how can we measure energy?

 by temperature change. For 1 L of water each ${ }^{\circ} \mathrm{C}$$Q=m c \Delta T$

\square

Substance	Specific heat $\mathbf{J} /\left(\mathbf{g}^{\circ} \mathbf{C}\right)$
Water(l) (liquid)	4.184
Water(s) (ice)	2.03
Water(g) (steam)	2.01
Ethanol(l) (grain alcohol)	2.44
Aluminum(s)	0.897
Granite(s)	0.803
Iron(s)	0.449
Lead(s)	0.129
Silver(s)	0.235
Gold(s)	0.129

forensic usefulness of specific heat identify the unknown metals

mass of metal (g)	temp. increase $(\circ \mathrm{C})$	heat absorbe d (J)	what metal is it?
4.68	182	256	
72	91	1336.6	
450	10	4603	

Periodic Trend in Specific Heats	
Alkaline earth elements	Specific heat $\left(\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}\right)$
Beryllium	1.825
Magnesium	1.023
Calcium	0.647
Strontium	0.301
Barium	0.204

how many joules of heat are needed to heat one cup (237 mL) of water from room temp. $\left(25^{\circ} \mathrm{C}\right)$ to boiling (100 ${ }^{\circ} \mathrm{C}$)?

energy and water

standard enthal pies of vaporization and fusion for water: (energy for phase changes)

how many Nutritional Calories are required to heat 18 g of water from -20 to $110^{\circ} \mathrm{C}$?

enthalpy

Heat at constant pressure (open system)
Observation:
$=$ heat change at constant pressure
$=\Delta H$ or $\Delta H_{r \times n}$
$\Delta H=q$ when pressure is constant
Observation

$$
\Delta \Pi_{1 \times n}
$$

This requires 6010 joules of energy for an 18 gram (1 mole) cube of ice at exactly zero degrees Celsius

$$
\Delta H \text { vs. } q \text { ? }
$$

Q
Problem 1: The combustion of $16 \mathrm{~g}(1 \mathrm{~mol})$ of methane $\left(\mathrm{CH}_{4}\right)$ releases 8,904 joules of heat. Write a thermochemical equation for this reaction.

How much energy is released during the formation of 12 grams of water by the combustion of methane?

calorimetry:

Standard enthalpy of formation:

$\left(\Delta \mathrm{H}^{\circ}\right)$ is the heat change that results when one mole of a compound is formed from its elements at a pressure of 1 atm.

50 g of a metal at $115.0^{\circ} \mathrm{C}$ is placed in a fully insulated cup containing 125 g of water at $25.6^{\circ} \mathrm{C}$. The water heats up to $29.3^{\circ} \mathrm{C}$. Use the table to identify the metal.

Strategy: 1. find heat gained by water (Q water) This is equal to the heat lost by the metal
(Ometal). You can now solve for $\mathrm{C}_{\text {metal }}$, and look it up.

Substance	Specific heat $\mathbf{J} /\left(\mathbf{g} \cdot{ }^{\circ} \mathbf{C}\right)$
Water(l) (liquid)	4.184
Water(s) (ice)	2.03
Water(g) (steam)	2.01
Ethanol(l) (grain alcohol)	2.44
Aluminum(s)	0.897
Granite(s)	0.803
Iron(s)	0.449
Lead(s)	0.129
Silver(s)	0.235
Gold(s)	0.129

Substance	$\Delta H_{\mathrm{i}}(\mathbf{k J} / \mathrm{mol})$	Substance	$\Delta H_{\mathbf{f}}^{\text {(}}$ ($\left.\mathbf{k J} / \mathrm{mol}\right)$
$\mathrm{Ag}(\mathrm{s})$	0	$\mathrm{H}_{2} \mathrm{O}_{2}(l)$	-187.6
$\mathrm{AgCl}(\mathrm{s})$	-127.04	$\mathrm{Hg}(l)$	0
$\mathrm{Al}(\mathrm{s})$	0	$\mathrm{I}_{2}(s)$	0
$\mathrm{Al}_{2} \mathrm{O}_{3}(s)$	-1669.8	$\mathrm{HI}(\mathrm{g})$	25.94
$\mathrm{Br}_{2}(l)$	0	$\mathrm{Mg}(\mathrm{s})$	0
$\mathrm{HBr}(\mathrm{g})$	-36.2	$\mathrm{MgO}(\mathrm{s})$	-601.8
C(graphite)	0	$\mathrm{MgCO}_{3}(s)$	-1112.9
C(diamond)	1.90	$\mathrm{N}_{2}(\mathrm{~g})$	0
$\mathrm{CO}(\mathrm{g})$	-110.5	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.3
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathrm{NO}(\mathrm{g})$	90.4
$\mathrm{Ca}(\mathrm{s})$	0	$\mathrm{NO}_{2}(\mathrm{~g})$	33.85
$\mathrm{CaO}(s)$	-635.6	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	9.66
$\mathrm{CaCO}_{3}(s)$	-1206.9	$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$	81.56
$\mathrm{Cl}_{2}(\mathrm{~g})$	0	$\mathrm{O}(\mathrm{g})$	249.4
$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{Cu}(\mathrm{s})$	0	$\mathrm{O}_{3}(\mathrm{~g})$	142.2
$\mathrm{CuO}(\mathrm{s})$	-155.2	S (rhombic)	0
$\mathrm{F}_{2}(\mathrm{~g})$	0	S (monoclinic)	0.30
$\mathrm{HF}(\mathrm{g})$	-268.61	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.1
$\mathrm{H}(\mathrm{g})$	218.2	$\mathrm{SO}_{3}(\mathrm{~g})$	-395.2
$\mathrm{H}_{2}(\mathrm{~g})$	0	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.15
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	$\mathrm{ZnO}(s)$	-347.98
$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8	$\mathrm{ZnS}(s)$	-202.9

$$
a A+b B \rightarrow c C+d D
$$

$\Delta H_{r \times n}^{O}=\Sigma n \Delta H_{f}^{0}$ (products) $-\Sigma m \Delta H_{f}^{\rho}$ (reactants)

Hess's Law:

reaction energies can be divided into steps

impress your friends by Enthalpy is a state function. (It doesn't saying it this way: matter how you get there, only where you start and end)

 use the following information to determine the standard enthalpy of formation of carbon dioxide; draw an energy diagram that relates them.$$
\begin{aligned}
\mathrm{C} \text { (graphite) }+1 / 2 \mathrm{O}_{2}(g) & \rightarrow \mathrm{CO}(g) \Delta \mathrm{H}^{0}=-110.5 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) & \rightarrow \mathrm{CO}_{2}(g) \Delta \mathrm{H}^{0}=-283 \mathrm{k} / \mathrm{mol}
\end{aligned}
$$

Calculate the standard enthalpy of formation of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ from its elements given the data below:

Spontaneous Physical and Chemical Processes...yes or no?
These are all spontaneous reactions...what would you conclude?
A waterfall runs downhill \square A lump of sugar dissolves in a cup of coffee

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O} \text { (l) } \Delta \mathrm{H}^{0}=890.4 \mathrm{k} / \mathrm{mol}
$$ At 1 atm, water freezes below $\mathrm{O}^{\circ} \mathrm{C}$ and ice melts above $0^{\circ} \mathrm{C}$

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\text {aq }) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\mathrm{O}}=-56.2 \mathrm{~kJ} / \mathrm{mol}
$$ Heat flows from a colder object to a warmer object A gas expands in an evacuated bulb \square Iron exposed to oxygen and water forms rust \square

Entropy (S) is

If the change from initial to final results in an increase in randomness the value of Δs is \square
Predict the relative entropy values for solids, liquids and gases

$$
S_{\text {solid }}<S_{\text {liquid }}<S_{\text {gas }}
$$

For any substance, the solid state is more ordered than the liquid state and the liquid state is more ordered than gas state.
Predict the sign of ΔS for the processes below:

Entropy Changes and gases

 When gases are produced (or consumed)If a reaction produces more gas molecules than it consumes, $\Delta S^{\circ}>0$.
If the total number of gas molecules diminishes, $\Delta S^{\circ}<0$.
If there is no net change in the total number of gas molecules, then ΔS° may be positive or negative BUT ΔS° will be a small number.

Predict whether the entropy change of the system in each of the following reactions is positive or negative.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

\square

Table 18.1

Standard Entropy Values (\mathbf{S}°) for Some Substances at $25^{\circ} \mathrm{C}$

Substance	\boldsymbol{s}° $(\mathbf{J} / \mathbf{K} \cdot \mathbf{m o l})$
$\mathrm{H}_{2} \mathrm{O}(l)$	69.9
$\mathrm{H}_{2} \mathrm{O}(g)$	188.7
$\mathrm{Br}_{2}(l)$	152.3
$\mathrm{Br}_{2}(g)$	245.3
$\mathrm{I}_{2}(s)$	116.7
$\mathrm{I}_{2}(g)$	260.6
C (diamond)	2.4
C (graphite)	5.69
CH_{4} (methane)	186.2
$\mathrm{C}_{2} \mathrm{H}_{6}$ (ethane)	229.5
$\mathrm{He}(g)$	126.1
$\mathrm{Ne}(g)$	146.2

ΔS and microstates:
what patterns do you observe for these standard entropy values?
predict $\Delta S=$ positive or negative
freezing ethand
evaporating a beaker of liquid bromine at room temperature
dissolving glucose in water
cooling nitrogen gas from $80^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$
\square

First Law of Thermodynamics

\square
Second Law of Thermodynamics

$$
\begin{array}{ll}
\text { Spontaneous process: } & \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}>0 \\
\text { Equilibrium process: } & \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}=0
\end{array}
$$

$$
\Delta \mathrm{G}_{\mathrm{r} \times n}^{0} \text { and } \Delta \mathrm{G}_{\mathrm{f}}^{0}
$$

define:

The standard free-energy of reaction ($\Delta \mathrm{G}^{0}$) is the free-energy change for a reaction when it occurs under standard-state conditions.

Standard free energy of formation $\left(\Delta G^{0}\right)$ is the freeenergy change that occurs when 1 mole of the compound is formed from its elements in their standard states.
how are they calculated?:

$$
\begin{aligned}
\Delta G_{r \times n}^{0}= & \sum n \Delta G_{f}^{0} \text { (products) } \\
& -\sum m \Delta G_{f}^{Q} \text { (reactants) } \\
\text { for } a A+ & b B \rightarrow C C+d D
\end{aligned}
$$

look them up!
ΔG^{0} fof any element in its stable form is zero.
calculating standard free energy changes

Calculate the standard free-energy changes for the following reactions at $25^{\circ} \mathrm{C}$
(given in $\mathrm{k} / \mathrm{mol}$).

$$
\begin{array}{lll}
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
-50.8-0 & -394.4-237.2
\end{array}
$$

\square

Free energy predictions based on the sign of enthalpy, entropy, and temperature

Temperature and Spontaneity of Chemical Reactions $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

$$
\Delta G=\Delta H-T \Delta S
$$

Free energy predictions:

$\Delta \boldsymbol{H}$	$\boldsymbol{\Delta S}$	$\boldsymbol{\Delta G}$
+	+	
+	-	
-	+	
-	-	

$$
\Delta G^{\circ}=130.0 \mathrm{~kJ} / \mathrm{mol} \text { at } 25^{\circ} \mathrm{C}
$$

$$
\Delta \mathrm{G}^{\mathrm{O}}=\mathrm{O} \text { at } 835^{\circ} \mathrm{C}
$$ predict the partial pressure of CO_{2} over this temperature range.

explanation:

Thermochemistry
Return to ChemTeam Main Menu

utorials \& Problem Sets

1. The Time-Temperature Graph
\checkmark Problems using one part of the T-T graph
\bullet Problems using two parts of the T-T graph
\checkmark Problems using three parts of the T-T graph

- Problems using four parts of the T-T graph
- Problems using five parts of the T-T graph
2.Specific Heat

3. Molar Heat of Vaporization
4.Molar Heat of Fusion
4. Determine Specific Heat by Experiment (10)
5. Determine Final Temp. When.

- Two Water Samples are Mixed Together (10)
- A Piece of Metal is Placed into Water (15)

7. How to Calculate a Calorimeter Constant
8. A Brief Survey of the Concepts of Energy, Work, Heat and Temperature
9. Enthalpy
10. Standard Enthalpy of Formation
11. Hess' Law - using two equations and their enthalpies (10) (10)
12.Hess' Law - using three equations and their enthal pies (10) (10)
12. Hess' Law - using four or more equations and their enthalpies (10)
13. Hess' Law - using standard enthalpies of formation
14. Hess' Law - using bond enthalpies (10) (5)
15. Problem Set \#1 in HTML, PS\#1 as PDF
16. Problem Set \#2 in HTML, SS\#2 as PDF
17. Some AP-Level Termochemistry Problems

Videos

1. How many kilojoules? A five-step calculation problem
2. A second five-step calculation problem
3. Calculate the final temperature when two water samples are mixed I
4.Calculate the final temperature when two water samples are mixed II
4. How to determine the specific heat of a metal
5. Determine the specific heat of lead
6. How to calculate a calorimeter constant I
7. How to calculate a calorimeter constant II

Links
Miscellaneous
additional topics

- bond energy
- ozone depletion
- lattice energy
- born-haber cycle
- enthalpy of solution
- hydration enthalpy

