$$
\begin{aligned}
& \text { 1. Welcome to chemistry } \\
& \begin{array}{r}
d=\frac{m}{V} \quad \begin{array}{r}
d=\text { density; } m=\text { mass in } g ; v= \\
\text { volume in } \mathrm{mL}\left(=\mathrm{cm}^{3}\right)
\end{array} \\
\text { temperature: } \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15
\end{array} \\
& { }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \times \frac{5}{9} \quad \circ \mathrm{~F}=\frac{9}{5}^{\circ} \mathrm{C}+32
\end{aligned} \begin{array}{r}
\text { 2. Stoichiometry } \quad 1 \text { mole }=6.02 \times 10^{23} \\
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \\
\% \text { error }=\frac{\text { error }}{\text { accepted valued }} \times 100
\end{array}
$$

\% composition

$$
=\frac{\text { molar mass of each element }}{\text { molar mass feombound }} \times 100 \%
$$

molar mass of compound

$$
\begin{aligned}
& \text { 3. Solutions Molarity }(M)=\frac{\text { moles of solute }}{\text { liters of solution }} \\
& \qquad C_{1} V_{1}=C_{2} V_{2}
\end{aligned}
$$

$$
c=\text { concentration }, v=\text { volume }
$$

5. Equilibrium for $a A+b B \leftrightarrows c C+d D$

$$
K_{e q}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

omit liquids and solids
$\mathrm{K}_{\text {eq }}=$ equilibrium constant
$[\mathrm{A}]=$ molar concentration of A

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

$\mathrm{K}_{\mathrm{p}}=$ equilibrium constant (pressure)
$\mathrm{K}_{\mathrm{c}}=$ equilibrium constant (concentration)

$$
R=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K}
$$

$\mathrm{T}=$ temperature (in Kelvin)
$\Delta n=$ sum of the coefficients of the gaseou
products minus the sum of the
coefficients of the gaseous reactants

formulas

boyles: charles: gay-lussac: combined:

$$
\frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}} \frac{T_{1}}{P_{1}}=\frac{T_{2}}{P_{2}} \quad \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

ideal gas law: $\quad P V=n R T$ must use L atm mol K

$$
22.4 \mathrm{~L}
$$

$$
=1 \mathrm{~mole} \text { gas at STP }
$$

density formula $d=\frac{P M}{R T}$
graham's law: $\frac{\text { rate }_{1}}{\text { rate }_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$
partial pressure
partial pressure of gas a $=\frac{\text { moles of gas a }}{\text { total moles of gas }} \times$ total pressure
11. 12: Bonds and intermolecular forces no equations
13. Energy (thermochemistry and thermodynamics) $q=m c \Delta T$

$q=$ heat,$m=$ mas

$\mathrm{c}=$ specific heat $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
$=4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ for $\mathrm{H}_{2} \mathrm{O}$ (l)
$\Delta T=$ temp change in ${ }^{\circ} \mathrm{C}$.

1 Nutritional Calori
 $=4184$ Joules

$=4$ British Thermal Units (BTU)
$=1000$ calories $=0.0016$ kilowatt hours

$\Delta G=\Delta H-T \Delta S$

$\Delta G=$ change in free energy
$\Delta \mathrm{H}=$ change in enthalpy
$\mathrm{T}=$ temperature
$\Delta S=$ change in entropy

14. Electrochemistr

$\Delta G=-n F E$
$\Delta G=$ free energy in joules
$n=$ number of electrons
$F=96,500$ coulumbs (J / V mol)
$E=$ cell potential (volts)

$K=e^{E n / 0257}$

$K=$ equilibrium constant (no units)
$\mathrm{E}=$ cell potential
= number of electrons

$\Delta G=-R T \ln K$

$R=8.314 \mathrm{~J} / \mathrm{k} \mathrm{mol}$
$T=$ kelvin temp
$K=$ equilibrium constant (no units)
Ampere $=1 \mathrm{C} / \mathrm{s}$

