Organic chemistry: the study of carbon-based substances

drawing organic substances

fill in the blanks

formula	ethane	ethanoic acid	glucose
empirical			
molecular	C_2H_6		
structural		H = C = C H = C = C H = OH	$H_{C} = 0 - H$ $H_{-C} = 0 - H$
condensed			
structural			

name these!

lots of minor rules will become evident by example:

haloalkanes aka

the mechanism depends on the type of alkly halide with other minor effects to consider

general formula:

inverts stereocenter

favored by polar aprotic solvents (polar but can't hydrogen bond) polarizes intermediate without forming a H-bond

S_N1 notes:

rate only depends on slow step: concentration of haloalkane.

steric hindrance and carbocation stability can slow things down...but is still faster than $S_N 2$

polar protic solvents help by stabilizing carbocation

symmetry of carbocation result in racemic mixture sadly

secondary alkly halides...a bit of each.

$S_N 1$ versus $S_N 2$ notes

small leaving group make either $S_N 1$ or $S_N 2$ faster: F>Cl>Br>1...but bond strength is weakest for the bigger C-X bond so Iodides react fastest, fluorides slowest.

 $S_{\rm N}1\,$ and $S_{\rm N}2$ energy profiles

we have a special enzyme for one of them

retrosynthetic analysis

starting with only ethanol (CH_3CH_2OH), synthesize ethyl acetate ($CH_3CO_2CH_2CH_3$)

