$d=$ density; $m=$ mass in $g ; v=$ volume in mL

$d=\frac{m}{V}$ Sl unitprefixes gillion $\left(1 O^{9}\right)$	giga
mega	million $\left(10^{6}\right)$
kilo	thousand $\left(10^{5}\right)$
deka	ten $\left(10^{\circ}\right)$
deci	tenth $\left(10^{-1}\right)$
centi	hundredth $\left(10^{-2}\right)$
milli	thousandth $\left(10^{-3}\right)$
micro	millionth $\left(10^{-6}\right)$
nano	billionth $\left(10^{-9}\right)$
pico	trillionth $\left(10^{-12}\right)$

2. data
\% yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100$
\% error $=\frac{\text { error }}{\text { accepted valued }} \times 100$
temperature: $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \times \frac{5}{9} \quad{ }^{\circ} \mathrm{F}=\frac{9}{5}^{\circ} \mathrm{C}+32$

3. matter, 4. atom: no formulas
5. electrons
$s=w f \quad e=h f \quad e=h s / w \quad w=h s / e$
$s=$ the speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$w=$ wavelength in meters
$f=$ frequency, per second.
$e=$ energy in joules
$h=$ Plancks constant $=6.626 \times 10^{-34} i \sec$
Balmer formula $:$
$w_{n m}=\frac{1}{0.01097\left(\frac{1}{\text { inner }^{2}}-\frac{1}{\text { outer }^{2}}\right)}$

$$
w=\text { wavelength in nanometers }
$$

$$
\begin{aligned}
& \text { inner }=\text { inner shell \#; outer }=\text { outer shell \#. }
\end{aligned}
$$

similarly:

$$
\mathrm{E}=2.18 \times 10^{-18} \text { joules }\left(\frac{1}{\text { inner }^{2}}-\frac{1}{\text { outer }^{2}}\right)
$$

10. gas laws
units

P pressure

$V=$ volume (L)
$T=$ Kelvin Temp (K)
$\mathrm{V}=$ Kelvin Temp (K)
$\mathrm{n}=\#$ of moles (mol)
$R=0.0821 \mathrm{Latm} / \mathrm{mol} \mathrm{K}$
$M=$ molar masses $(\mathrm{g} / \mathrm{mol})$
$d=$ density

formulas

boyles: charles: gay-lussac:
combined:
$P_{1} V_{1}=P_{2} V_{2} \quad \frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}} \quad \frac{T_{1}}{P_{1}}=\frac{T_{2}}{P_{2}} \quad \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$ must use K for temperature; other units must cancel ideal gas law:

$$
P V=n R T \quad \text { must use } L \text { atm mol } K
$$

avogadro's law: density formula graham's law:

$$
\begin{aligned}
& 22.4 \mathrm{~L} \\
& =1 \text { mole gas at STP }
\end{aligned} d=\frac{P M}{R T} \quad \frac{\text { rate }_{1}}{\text { rate }_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

$$
\begin{gathered}
\text { partial pressure } \\
\text { partial pressure of gas a }=\frac{\text { moles of gas a }}{\text { total moles of gas }} \times \text { total pressure }
\end{gathered}
$$

$$
\begin{aligned}
& \text { 9. the mole: } \quad \text { is an amount! }=6.02 \times 10^{23} \\
& \begin{array}{c}
\text { mol-mol } \\
\text { conversions: }
\end{array} \quad \operatorname{mol} A \times \frac{\mathrm{mol} \mathrm{~B}}{\mathrm{~mol} A}=\operatorname{mol} B \\
& \underset{\substack{\text { gram-mol } \\
\text { conversions: }}}{g A} \times \frac{\mathrm{mol} A}{\mathrm{gA}} \times \frac{\mathrm{mol} B}{\mathrm{~mol} A}=\operatorname{mol} B \\
& \underset{\text { conversions: }}{\text { mol-g }} \quad \operatorname{mol} A \times \frac{\operatorname{mol} B}{\operatorname{mol} A} \times \frac{g B}{\operatorname{mol} B}=g B \\
& \begin{array}{c}
g-g \\
\text { conversions: }
\end{array} g A \times \frac{\mathrm{mol} A}{g A} \times \frac{\mathrm{mol} B}{\mathrm{~mol} A} \times \frac{g B}{\mathrm{~mol} B}=g B
\end{aligned}
$$

11. energy:
$q=m c \Delta T$
$q=$ heat, $m=$ mass, $c=$ specific heat
$q=$ heat, $m=$ mass, $c=$ specific heat
$\left(J / g^{\circ} \mathrm{C}\right), \Delta T=$ temp change in ${ }^{\circ} \mathrm{C}$. $\left(J / g^{\circ} \mathrm{C}\right), \Delta T=$ temp change in ${ }^{\circ} \mathrm{C}$. energy needed to me $c_{\text {water(I) }}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad$ and boil water: $c_{\text {water(s) }}=2.03 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad \Delta \mathrm{H}_{\text {fus water }}=334 \mathrm{~J} / \mathrm{g}$ $c_{\text {water(s) }}=2.03 \mathrm{~J} / \mathrm{C}^{\circ} \mathrm{C} \quad \Delta \mathrm{H}_{\text {vap water }}=2260 \mathrm{~J} / \mathrm{g}$
$c_{\text {water(g) }}=2.01 \mathrm{~g}$ $\Delta H_{\text {vap water }}=2260 \mathrm{~J} / \mathrm{g} ; \quad \Delta \mathrm{H}_{\text {fus water }}=334 \mathrm{~J} / \mathrm{g}$ water boils/condenses at $100^{\circ} \mathrm{C}$ water melts/freezes at $\mathrm{O}^{\circ} \mathrm{C}$

$$
1 \text { Nutritional Calorie }=4184 \text { Joules }=4 \text { BTV }
$$

$$
=1000 \text { calories }=0.0016 \text { kilowatt hours }
$$ $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

$\Delta G=$ change in free energy $\Delta \mathrm{H}=$ change in enthalpy
$\mathrm{T}=$ temperature
$\Delta S=$ change in entropy

15. acids and bases	
$\begin{gathered} \mathrm{K}_{\mathrm{a}} \text { for example of } \mathrm{HCl} \\ =[\mathrm{H}+][\mathrm{Cl}-] /[\mathrm{HCl}] \\ \mathrm{K}_{\mathrm{w}}=[\mathrm{H}+]\left[\mathrm{OH}^{-}\right]=10^{-14} \end{gathered}$ titration:	$\mathrm{pH}=-\log [\mathrm{H}+]$
	$10^{-\mathrm{pH}}=\left[\mathrm{H}^{+}\right]$
	$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
	$10^{-\mathrm{pOH}}=\left[\mathrm{OH}^{-}\right]$
	$\mathrm{pH}+\mathrm{pOH}=14$
molarity $_{\text {unknown }}=$	
(volume $\left._{\text {standard }}\right)\left(\right.$ molarity $_{\text {standard }}$)	
volume unknown	

for:
14. equilibrium
$a A+b B \rightleftarrows c C+d D$
$K_{\text {eq }}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
eaction
reaction rate $=\Delta_{\text {concentation }} / \Delta_{\text {time }}$
$M=$ Molarity $=$ moles per liter $=$ moles $/$ lite

$$
\Delta_{\text {concentration }} \text { order }=\Delta_{\text {rate }}
$$

1. percent concentration by volume ($\% \mathrm{v} / \mathrm{v}$)
$=$ volume of solute $\times 100$ volume of solution
2. percent concentration by mass ($\% \mathrm{~m} / \mathrm{m}$) mass of solute $\times 100$ mass of solution
3. Molarity (M)
= moles of solute Liters of solution
4. molality (m)
$=$ moles of solute Kilograms of solvent
5. mole fraction (X)
$=$ moles of solute moles of solution
6. concentration and dilution 6. $C_{1} V_{1}=C_{2} V_{2}$
where C_{1} and C_{2} are where C_{1} and C_{2} are

$$
\begin{aligned}
& \text { concentrations } \\
& \text { and } V_{1} \text { and } V_{2} \text { are volumes }
\end{aligned}
$$

7. Henry's Law:

Solubility is proportional to Pressure $S_{1} / P_{1}=S_{2} / P_{2}$
8. pressure and volume units units
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=14.7 \mathrm{psi}=101.3 \mathrm{KPa}$

$$
1 \mathrm{~L}=1000 \mathrm{~mL}
$$

9. boiling point elevation $\left(\Delta T_{b}\right)$ and freezing point depression ($\Delta \mathrm{T}_{f}$) of solutions

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =\mathrm{K}_{\mathrm{f}} \cdot \mathrm{pm} \\
\Delta \mathrm{~T}_{\mathrm{h}} & k_{\mathrm{L}} \mathrm{~m} \cdot \mathrm{pm}
\end{aligned}
$$

$\Delta T_{f}=$ change in freezing temp; $\Delta \mathrm{T}_{\mathrm{b}}=$ change in boiling temperature; $\mathrm{K}_{f}=$ freezing point in boiling temperature; $\mathrm{K}_{\mathrm{f}}=$ freezing point
constant; $\mathrm{K}_{\mathrm{b}}=$ boiling point constant; $m=$ colality; $p m=$ particle molality (ion count) (K_{f} is for the solvent; pm is for the solute)

